ترغب بنشر مسار تعليمي؟ اضغط هنا

A roadmap for bootstrapping critical gauge theories: decoupling operators of conformal field theories in $d>2$ dimensions

87   0   0.0 ( 0 )
 نشر من قبل Yin-Chen He
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a roadmap for bootstrapping conformal field theories (CFTs) described by gauge theories in dimensions $d>2$. In particular, we provide a simple and workable answer to the question of how to detect the gauge group in the bootstrap calculation. Our recipe is based on the notion of emph{decoupling operator}, which has a simple (gauge) group theoretical origin, and is reminiscent of the null operator of $2d$ Wess-Zumino-Witten CFTs in higher dimensions. Using the decoupling operator we can efficiently detect the rank (i.e. color number) of gauge groups, e.g., by imposing gap conditions in the CFT spectrum. We also discuss the physics of the equation of motion, which has interesting consequences in the CFT spectrum as well. As an application of our recipes, we study a prototypical critical gauge theory, namely the scalar QED which has a $U(1)$ gauge field interacting with critical bosons. We show that the scalar QED can be solved by conformal bootstrap, namely we have obtained its kinks and islands in both $d=3$ and $d=2+epsilon$ dimensions.



قيم البحث

اقرأ أيضاً

The loss of criticality in the form of weak first-order transitions or the end of the conformal window in gauge theories can be described as the merging of two fixed points that move to complex values of the couplings. When the complex fixed points a re close to the real axis, the system typically exhibits walking behavior with Miransky (or Berezinsky-Kosterlitz-Thouless) scaling. We present a novel realization of these phenomena at strong coupling by means of the gauge/gravity duality, and give evidence for the conjectured existence of complex conformal field theories at the fixed points.
In this work we explore the possibility of spontaneous breaking of global symmetries at all nonzero temperatures for conformal field theories (CFTs) in $D = 4$ space-time dimensions. We show that such a symmetry-breaking indeed occurs in certain fami lies of non-supersymmetric large $N$ gauge theories at a planar limit. We also show that this phenomenon is accompanied by the system remaining in a persistent Brout-Englert-Higgs (BEH) phase at any temperature. These analyses are motivated by the work done in arXiv:2005.03676 where symmetry-breaking was observed in all thermal states for certain CFTs in fractional dimensions. In our case, the theories demonstrating the above features have gauge groups which are specific products of $SO(N)$ in one family and $SU(N)$ in the other. Working in a perturbative regime at the $Nrightarrowinfty$ limit, we show that the beta functions in these theories yield circles of fixed points in the space of couplings. We explicitly check this structure up to two loops and then present a proof of its survival under all loop corrections. We show that under certain conditions, an interval on this circle of fixed points demonstrates both the spontaneous breaking of a global symmetry as well as a persistent BEH phase at all nonzero temperatures. The broken global symmetry is $mathbb{Z}_2$ in one family of theories and $U(1)$ in the other. The corresponding order parameters are expectation values of the determinants of bifundamental scalar fields in these theories. We characterize these symmetries as baryon-like symmetries in the respective models.
We study circuit complexity for conformal field theory states in arbitrary dimensions. Our circuits start from a primary state and move along a unitary representation of the Lorentzian conformal group. We consider different choices of distance functi ons and explain how they can be understood in terms of the geometry of coadjoint orbits of the conformal group. Our analysis highlights a connection between the coadjoint orbits of the conformal group and timelike geodesics in anti-de Sitter spacetimes. We extend our method to study circuits in other symmetry groups using a group theoretic generalization of the notion of coherent states.
We consider conformal N=2 super Yang-Mills theories with gauge group SU(N) and Nf=2N fundamental hypermultiplets in presence of a circular 1/2-BPS Wilson loop. It is natural to conjecture that the matrix model which describes the expectation value of this system also encodes the one-point functions of chiral scalar operators in presence of the Wilson loop. We obtain evidence of this conjecture by successfully comparing, at finite N and at the two-loop order, the one-point functions computed in field theory with the vacuum expectation values of the corresponding normal-ordered operators in the matrix model. For the part of these expressions with transcendentality zeta(3), we also obtain results in the large-N limit that are exact in the t Hooft coupling lambda.
We derive spectral sum rules in the shear channel for conformal field theories at finite temperature in general $dgeq 3$ dimensions. The sum rules result from the OPE of the stress tensor at high frequency as well as the hydrodynamic behaviour of the theory at low frequencies. The sum rule states that a weighted integral of the spectral density over frequencies is proportional to the energy density of the theory. We show that the proportionality constant can be written in terms the Hofman-Maldacena variables $t_2, t_4$ which determine the three point function of the stress tensor. For theories which admit a two derivative gravity dual this proportionality constant is given by $frac{d}{2(d+1)}$. We then use causality constraints and obtain bounds on the sum rule which are valid in any conformal field theory. Finally we demonstrate that the high frequency behaviour of the spectral function in the vector and the tensor channel are also determined by the Hofman-Maldacena variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا