ﻻ يوجد ملخص باللغة العربية
While current information retrieval systems are effective for known-item retrieval where the searcher provides a precise name or identifier for the item being sought, systems tend to be much less effective for cases where the searcher is unable to express a precise name or identifier. We refer to this as tip of the tongue (TOT) known-item retrieval, named after the cognitive state of not being able to retrieve an item from memory. Using movie search as a case study, we explore the characteristics of questions posed by searchers in TOT states in a community question answering website. We analyze how searchers express their information needs during TOT states in the movie domain. Specifically, what information do searchers remember about the item being sought and how do they convey this information? Our results suggest that searchers use a combination of information about: (1) the content of the item sought, (2) the context in which they previously engaged with the item, and (3) previous attempts to find the item using other resources (e.g., search engines). Additionally, searchers convey information by sometimes expressing uncertainty (i.e., hedging), opinions, emotions, and by performing relative (vs. absolute) comparisons with attributes of the item. As a result of our analysis, we believe that searchers in TOT states may require specialized query understanding methods or document representations. Finally, our preliminary retrieval experiments show the impact of each information type presented in information requests on retrieval performance.
In this paper, we identify and study an important problem of gradient item retrieval. We define the problem as retrieving a sequence of items with a gradual change on a certain attribute, given a reference item and a modification text. For example, a
Interactions between search and recommendation have recently attracted significant attention, and several studies have shown that many potential applications involve with a joint problem of producing recommendations to users with respect to a given q
In this article we provide a formulation of empirical bayes described by Atchade (2011) to tune the hyperparameters of priors used in bayesian set up of collaborative filter. We implement the same in MovieLens small dataset. We see that it can be use
In Interactive Information Retrieval (IIR) experiments the users gaze motion on web pages is often recorded with eye tracking. The data is used to analyze gaze behavior or to identify Areas of Interest (AOI) the user has looked at. So far, tools for
The goal of case-based retrieval is to assist physicians in the clinical decision making process, by finding relevant medical literature in large archives. We propose a research that aims at improving the effectiveness of case-based retrieval systems