ﻻ يوجد ملخص باللغة العربية
Interactions between search and recommendation have recently attracted significant attention, and several studies have shown that many potential applications involve with a joint problem of producing recommendations to users with respect to a given query, termed $Collaborative$ $Retrieval$ (CR). Successful algorithms designed for CR should be potentially flexible at dealing with the sparsity challenges since the setup of collaborative retrieval associates with a given $query$ $times$ $user$ $times$ $item$ tensor instead of traditional $user$ $times$ $item$ matrix. Recently, several works are proposed to study CR task from users perspective. In this paper, we aim to sufficiently explore the sophisticated relationship of each $query$ $times$ $user$ $times$ $item$ triple from items perspective. By integrating item-based collaborative information for this joint task, we present an alternative factorized model that could better evaluate the ranks of those items with sparse information for the given query-user pair. In addition, we suggest to employ a recently proposed scalable ranking learning algorithm, namely BPR, to optimize the state-of-the-art approach, $Latent$ $Collaborative$ $Retrieval$ model, instead of the original learning algorithm. The experimental results on two real-world datasets, (i.e. emph{Last.fm}, emph{Yelp}), demonstrate the efficiency and effectiveness of our proposed approach.
In this paper, we identify and study an important problem of gradient item retrieval. We define the problem as retrieving a sequence of items with a gradual change on a certain attribute, given a reference item and a modification text. For example, a
The item cold-start problem seriously limits the recommendation performance of Collaborative Filtering (CF) methods when new items have either none or very little interactions. To solve this issue, many modern Internet applications propose to predict
Session-based recommendation aims at predicting the next item given a sequence of previous items consumed in the session, e.g., on e-commerce or multimedia streaming services. Specifically, session data exhibits some unique characteristics, i.e., ses
Latent Factor Model (LFM) is one of the most successful methods for Collaborative filtering (CF) in the recommendation system, in which both users and items are projected into a joint latent factor space. Base on matrix factorization applied usually
Recommenders personalize the web content by typically using collaborative filtering to relate users (or items) based on explicit feedback, e.g., ratings. The difficulty of collecting this feedback has recently motivated to consider implicit feedback