ترغب بنشر مسار تعليمي؟ اضغط هنا

An efficient dynamical low-rank algorithm for the Boltzmann-BGK equation close to the compressible viscous flow regime

121   0   0.0 ( 0 )
 نشر من قبل Lukas Einkemmer
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

It has recently been demonstrated that dynamical low-rank algorithms can provide robust and efficient approximation to a range of kinetic equations. This is true especially if the solution is close to some asymptotic limit where it is known that the solution is low-rank. A particularly interesting case is the fluid dynamic limit that is commonly obtained in the limit of small Knudsen number. However, in this case the Maxwellian which describes the corresponding equilibrium distribution is not necessarily low-rank; because of this, the methods known in the literature are only applicable to the weakly compressible case. In this paper, we propose an efficient dynamical low-rank integrator that can capture the fluid limit -- the Navier-Stokes equations -- of the Boltzmann-BGK model even in the compressible regime. This is accomplished by writing the solution as $f=Mg$, where $M$ is the Maxwellian and the low-rank approximation is only applied to $g$. To efficiently implement this decomposition within a low-rank framework requires, in the isothermal case, that certain coefficients are evaluated using convolutions, for which fast algorithms are known. Using the proposed decomposition also has the advantage that the rank required to obtain accurate results is significantly reduced compared to the previous state of the art. We demonstrate this by performing a number of numerical experiments and also show that our method is able to capture sharp gradients/shock waves.



قيم البحث

اقرأ أيضاً

111 - Lukas Einkemmer 2018
In this paper, we propose a numerical method for solving weakly compressible fluid flow based on a dynamical low-rank projector splitting. The low-rank splitting scheme is applied to the Boltzmann equation with BGK collision term, which results in a set of constant coefficient advection equations. This procedure is numerically efficient as a small rank is sufficient to obtain the relevant dynamics (described by the Navier--Stokes equations). The resulting method can be combined with a range of different discretization strategies; in particular, it is possible to implement spectral and semi-Lagrangian methods, which allows us to design numerical schemes that are not encumbered by the sonic CFL condition.
The primary challenge in solving kinetic equations, such as the Vlasov equation, is the high-dimensional phase space. In this context, dynamical low-rank approximations have emerged as a promising way to reduce the high computational cost imposed by such problems. However, a major disadvantage of this approach is that the physical structure of the underlying problem is not preserved. In this paper, we propose a dynamical low-rank algorithm that conserves mass, momentum, and energy as well as the corresponding continuity equations. We also show how this approach can be combined with a conservative time and space discretization.
The Poisson-Boltzmann equation is a widely used model to study the electrostatics in molecular solvation. Its numerical solution using a boundary integral formulation requires a mesh on the molecular surface only, yielding accurate representations of the solute, which is usually a complicated geometry. Here, we utilize adjoint-based analyses to form two goal-oriented error estimates that allows us to determine the contribution of each discretization element (panel) to the numerical error in the solvation free energy. This information is useful to identify high-error panels to then refine them adaptively to find optimal surface meshes. We present results for spheres and real molecular geometries, and see that elements with large error tend to be in regions where there is a high electrostatic potential. We also find that even though both estimates predict different total errors, they have similar performance as part of an adaptive mesh refinement scheme. Our test cases suggest that the adaptive mesh refinement scheme is very effective, as we are able to reduce the error one order of magnitude by increasing the mesh size less than 20%. This result sets the basis towards efficient automatic mesh refinement schemes that produce optimal meshes for solvation energy calculations.
Numerical methods that approximate the solution of the Vlasov-Poisson equation by a low-rank representation have been considered recently. These methods can be extremely effective from a computational point of view, but contrary to most Eulerian Vlas ov solvers, they do not conserve mass and momentum, neither globally nor in respecting the corresponding local conservation laws. This can be a significant limitation for intermediate and long time integration. In this paper we propose a numerical algorithm that overcomes some of these difficulties and demonstrate its utility by presenting numerical simulations.
We propose a new method for the approximate solution of the Lyapunov equation with rank-$1$ right-hand side, which is based on extended rational Krylov subspace approximation with adaptively computed shifts. The shift selection is obtained from the c onnection between the Lyapunov equation, solution of systems of linear ODEs and alternating least squares method for low-rank approximation. The numerical experiments confirm the effectiveness of our approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا