ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a numerical method for solving weakly compressible fluid flow based on a dynamical low-rank projector splitting. The low-rank splitting scheme is applied to the Boltzmann equation with BGK collision term, which results in a set of constant coefficient advection equations. This procedure is numerically efficient as a small rank is sufficient to obtain the relevant dynamics (described by the Navier--Stokes equations). The resulting method can be combined with a range of different discretization strategies; in particular, it is possible to implement spectral and semi-Lagrangian methods, which allows us to design numerical schemes that are not encumbered by the sonic CFL condition.
Numerical methods that approximate the solution of the Vlasov-Poisson equation by a low-rank representation have been considered recently. These methods can be extremely effective from a computational point of view, but contrary to most Eulerian Vlas
It has recently been demonstrated that dynamical low-rank algorithms can provide robust and efficient approximation to a range of kinetic equations. This is true especially if the solution is close to some asymptotic limit where it is known that the
Flows in which the primary features of interest do not rely on high-frequency acoustic effects, but in which long-wavelength acoustics play a nontrivial role, present a computational challenge. Integrating the entire domain with low-Mach-number metho
Many problems encountered in plasma physics require a description by kinetic equations, which are posed in an up to six-dimensional phase space. A direct discretization of this phase space, often called the Eulerian approach, has many advantages but
The structure-preserving doubling algorithm (SDA) is a fairly efficient method for solving problems closely related to Hamiltonian (or Hamiltonian-like) matrices, such as computing the required solutions to algebraic Riccati equations. However, for l