ﻻ يوجد ملخص باللغة العربية
Previous works on formally studying mobile robotic swarms consider necessary and sufficient system hypotheses enabling to solve theoretical benchmark problems (geometric pattern formation, gathering, scattering, etc.). We argue that formal methods can also help in the early stage of mobile robotic swarms protocol design, to obtain protocols that are correct-by-design, even for problems arising from real-world use cases, not previously studied theoretically. Our position is supported by a concrete case study. Starting from a real-world case scenario, we jointly design the formal problem specification, a family of protocols that are able to solve the problem, and their corresponding proof of correctness, all expressed with the same formal framework. The concrete framework we use for our development is the PACTOLE library based on the COQ proof assistant.
Computer-Aided Design (CAD) applications are used in manufacturing to model everything from coffee mugs to sports cars. These programs are complex and require years of training and experience to master. A component of all CAD models particularly diff
Engineering sketches form the 2D basis of parametric Computer-Aided Design (CAD), the foremost modeling paradigm for manufactured objects. In this paper we tackle the problem of learning based engineering sketch generation as a first step towards syn
We consider the problem of partitioning the set of vertices of a given unit disk graph (UDG) into a minimum number of cliques. The problem is NP-hard and various constant factor approximations are known, with the current best ratio of 3. Our main res
It was recently shown that a version of the greedy algorithm gives a construction of fault-tolerant spanners that is size-optimal, at least for vertex faults. However, the algorithm to construct this spanner is not polynomial-time, and the best-known
We consider the distributed version of the Multiple Knapsack Problem (MKP), where $m$ items are to be distributed amongst $n$ processors, each with a knapsack. We propose different distributed approximation algorithms with a tradeoff between time and