ﻻ يوجد ملخص باللغة العربية
We present the statistical methods that have been developed to analyse the OzDES reverberation mapping sample. To perform this statistical analysis we have created a suite of customisable simulations that mimic the characteristics of each individual source in the OzDES sample.These characteristics include: the variability in the photometric and spectroscopic lightcurves,the measurement uncertainties and the observational cadence. By simulating six real sources that contain the CIV emission line, we developed a set of quality criteria that ranks the reliability of a recovered time lag depending on the agreement between different recovery methods, the magnitude of the uncertainties, and the rate at which false positives were found in the simulations. Of these six sources, two were given a quality rating of 1, corresponding to our gold standard. Lags were recovered at 223$pm$56 and 378$pm$104 days with redshifts of 1.93 and 2.74 respectively. Future work will apply these methods to the entire OzDES sample of $sim$750 AGN.
We broadly explore the effects of systematic errors on reverberation mapping lag uncertainty estimates from {tt JAVELIN} and the interpolated cross-correlation function (ICCF) method. We focus on simulated lightcurves from random realizations of the
Reverberation mapping is a robust method to measure the masses of supermassive black holes (SMBHs) outside of the local Universe. Measurements of the radius -- luminosity ($R-L$) relation using the Mg II emission line are critical for determining the
We present reverberation-mapping lags and black-hole mass measurements using the CIV 1549 broad emission line from a sample of 349 quasars monitored as a part of the Sloan Digital Sky Survey Reverberation Mapping Project. Our data span four years of
We investigate the effects of extended multi-year light curves (9-year photometry and 5-year spectroscopy) on the detection of time lags between the continuum variability and broad-line response of quasars at z>~1.5, and compare with the results usin
We report the discovery of rapid variations of a high-velocity CIV broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Proje