ﻻ يوجد ملخص باللغة العربية
We broadly explore the effects of systematic errors on reverberation mapping lag uncertainty estimates from {tt JAVELIN} and the interpolated cross-correlation function (ICCF) method. We focus on simulated lightcurves from random realizations of the lightcurves of five intensively monitored AGNs. Both methods generally work well even in the presence of systematic errors, although {tt JAVELIN} generally provides better error estimates. Poorly estimated lightcurve uncertainties have less effect on the ICCF method because, unlike {tt JAVELIN}, it does not explicitly assume Gaussian statistics. Neither method is sensitive to changes in the stochastic process driving the continuum or the transfer function relating the line lightcurve to the continuum. The only systematic error we considered that causes significant problems is if the line lightcurve is not a smoothed and shifted version of the continuum lightcurve but instead contains some additional sources of variability.
We present the statistical methods that have been developed to analyse the OzDES reverberation mapping sample. To perform this statistical analysis we have created a suite of customisable simulations that mimic the characteristics of each individual
We investigate the performance of different methodologies that measure the time lag between broad-line and continuum variations in reverberation mapping data using simulated light curves that probe a range of cadence, time baseline, and signal-to-noi
We present reverberation mapping results for the MgII 2800 A broad emission line in a sample of 193 quasars at 0.35<z<1.7 with photometric and spectroscopic monitoring observations from the Sloan Digital Sky Survey Reverberation Mapping project durin
A class of methods for measuring time delays between astronomical time series is introduced in the context of quasar reverberation mapping, which is based on measures of randomness or complexity of the data. Several distinct statistical estimators ar
We present reverberation-mapping lags and black-hole mass measurements using the CIV 1549 broad emission line from a sample of 349 quasars monitored as a part of the Sloan Digital Sky Survey Reverberation Mapping Project. Our data span four years of