ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Ternary Content-Addressable Memory Is Indeed Promising: Design and Benchmarking Using Nanoelectromechanical Relays

103   0   0.0 ( 0 )
 نشر من قبل Hongtao Zhong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Ternary content addressable memory (TCAM) has been a critical component in caches, routers, etc., in which density, speed, power efficiency, and reliability are the major design targets. There have been the conventional low-write-power but bulky SRAM-based TCAM design, and also denser but less reliable or higher-write-power TCAM designs using nonvolatile memory (NVM) devices. Meanwhile, some TCAM designs using dynamic memories have been also proposed. Although dynamic design TCAM is denser than CMOS SRAM TCAM and more reliable than NVM TCAM, the conventional row-by-row refresh operations land up with a bottleneck of interference with normal TCAM activities. Therefore, this paper proposes a custom low-power dynamic TCAM using nanoelectromechanical (NEM) relay devices utilizing one-shot refresh to solve the memory refresh problem. By harnessing the unique NEM relay characteristics with a proposed novel cell structure, the proposed TCAM occupies a small footprint of only 3 transistors (with two NEM relays integrated on the top through the back-end-of-line process), which significantly outperforms the density of 16-transistor SRAM-based TCAM. In addition, evaluations show that the proposed TCAM improves the write energy efficiency by 2.31x, 131x, and 13.5x over SRAM, RRAM, and FeFET TCAMs, respectively; The search energy-delay-product is improved by 12.7x, 1.30x, and 2.83x over SRAM, RRAM, and FeFET TCAMs, respectively.



قيم البحث

اقرأ أيضاً

Ferroelectric field effect transistors (FeFETs) are being actively investigated with the potential for in-memory computing (IMC) over other non-volatile memories (NVMs). Content Addressable Memories (CAMs) are a form of IMC that performs parallel sea rches for matched entries over a memory array for a given input query. CAMs are widely used for data-centric applications that involve pattern matching and search functionality. To accommodate the ever expanding data, it is attractive to resort to analog CAM for memory density improvement. However, the digital CAM design nowadays based on standard CMOS or emerging nonvolatile memories (e.g., resistive storage devices) is already challenging due to area, power, and cost penalties. Thus, it can be extremely expensive to achieve analog CAM with those technologies due to added cell components. As such, we propose, for the first time, a universal compact FeFET based CAM design, FeCAM, with search and storage functionality enabled in digital and analog domain simultaneously. By exploiting the multi-level-cell (MLC) states of FeFET, FeCAM can store and search inputs in either digital or analog domain. We perform a device-circuit co-design of the proposed FeCAM and validate its functionality and performance using an experimentally calibrated FeFET model. Circuit level simulation results demonstrate that FeCAM can either store continuous matching ranges or encode 3-bit data in a single CAM cell. When compared with the existing digital CMOS based CAM approaches, FeCAM is found to improve both memory density by 22.4X and energy saving by 8.6/3.2X for analog/digital modes, respectively. In the CAM-related application, our evaluations show that FeCAM can achieve 60.5X/23.1X saving in area/search energy compared with conventional CMOS based CAMs.
Nearest neighbor (NN) search is an essential operation in many applications, such as one/few-shot learning and image classification. As such, fast and low-energy hardware support for accurate NN search is highly desirable. Ternary content-addressable memories (TCAMs) have been proposed to accelerate NN search for few-shot learning tasks by implementing $L_infty$ and Hamming distance metrics, but they cannot achieve software-comparable accuracies. This paper proposes a novel distance function that can be natively evaluated with multi-bit content-addressable memories (MCAMs) based on ferroelectric FETs (FeFETs) to perform a single-step, in-memory NN search. Moreover, this approach achieves accuracies comparable to floating-point precision implementations in software for NN classification and one/few-shot learning tasks. As an example, the proposed method achieves a 98.34% accuracy for a 5-way, 5-shot classification task for the Omniglot dataset (only 0.8% lower than software-based implementations) with a 3-bit MCAM. This represents a 13% accuracy improvement over state-of-the-art TCAM-based implementations at iso-energy and iso-delay. The presented distance function is resilient to the effects of FeFET device-to-device variations. Furthermore, this work experimentally demonstrates a 2-bit implementation of FeFET MCAM using AND arrays from GLOBALFOUNDRIES to further validate proof of concept.
Ternary logic system is the most promising and pursued alternate to the prevailing binary logic systems due to the energy efficiency of circuits following reduced circuit complexity and chip area. In this paper, we have proposed a ternary 3-Transisto r Dynamic Random-Access Memory (3T-DRAM) cell using a single word-line for both read and write operation. For simulation of the circuit, we have used Carbon-Nano-Tube Field Effect Transistor (CNTFET). Here, we have analyzed the operation of the circuit considering different process variations and showed the results for write delay, read sensing time, and consumed current. Along with the basic DRAM design, we have proposed a ternary sense circuitry for the proper read operation of the proposed DRAM. The simulation and analysis are executed using the H-SPICE tool with Stanford University CNTFET model.
This paper presents a novel resistive-only Binary and Ternary Content Addressable Memory (B/TCAM) cell that consists of two Complementary Resistive Switches (CRSs). The operation of such a cell relies on a logic$rightarrow$ON state transition that enables this novel CRS application.
Growing uncertainty in design parameters (and therefore, in design functionality) renders stochastic computing particularly promising, which represents and processes data as quantized probabilities. However, due to the difference in data representati on, integrating conventional memory (designed and optimized for non-stochastic computing) in stochastic computing systems inevitably incurs a significant data conversion overhead. Barely any stochastic computing proposal to-date covers the memory impact. In this paper, as the first study of its kind to the best of our knowledge, we rethink the memory system design for stochastic computing. The result is a seamless stochastic system, StochMem, which features analog memory to trade the energy and area overhead of data conversion for computation accuracy. In this manner StochMem can reduce the energy (area) overhead by up-to 52.8% (93.7%) at the cost of at most 0.7% loss in computation accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا