ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlocal effects in negative triangularity TCV plasmas

65   0   0.0 ( 0 )
 نشر من قبل Gabriele Merlo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Global gradient driven GENE gyrokinetic simulations are used to investigate TCV plasmas with negative triangularity. Considering a limited L-mode plasma, corresponding to an experimental triangularity scan, numerical results are able to reproduce the actual transport level over a major fraction of the plasma minor radius for a plasma with $delta_{rm LCFS}=-0.3$ and its equivalent with standard positive triangularity $delta$. For the same heat flux, a larger electron temperature gradient is sustained by $delta<0$, in turn resulting in an improved electron energy confinement. Consistently with the experiments, a reduction of the electron density fluctuations is also seen. Local flux-tube simulations are used to gauge the magnitude of nonlocal effects. Surprisingly, very little differences are found between local and global approaches for $delta>0$, while local results yield a strong overestimation of the heat fluxes when $delta<0$. Despite the high sensitivity of the turbulence level with respect to the input parameters, global effects appear to play a crucial role in the negative triangularity plasma and must be retained to reconcile simulations and experiments. Finally, a general stabilizing effect of negative triangularity, reducing fluxes and fluctuations by a factor dependent on the actual profiles, is recovered.



قيم البحث

اقرأ أيضاً

215 - F. Sattin , D.F. Escande 2013
A long standing puzzle in fusion research comes from experiments where a sudden peripheral electron temperature perturbation is accompanied by an almost simultaneous opposite change in central temperature, in a way incompatible with local transport m odels. This paper shows these experiments and similar ones are fairly well quantitatively reproduced, when induction effects are incorporated in the total plasma response, alongside standard local diffusive transport, as suggested in earlier work [V.D. Pustovitov, Plasma Phys. Control. Fusion {bf 54}, 124036 (2012)].
137 - T. Nakamura , Y. Fukuda , A. Yogo 2008
Coulomb implosion mechanism of the negatively charged ion acceleration in laser plasmas is proposed. When a cluster target is irradiated by an intense laser pulse and the Coulomb explosion of positively charged ions occurs, the negative ions are acce lerated inward. The maximum energy of negative ions is several times lower than that of positive ions. The theoretical description and Particle-in-Cell simulation of the Coulomb implosion mechanism and the evidence of the negative ion acceleration in the experiments on the high intensity laser pulse interaction with the cluster targets are presented.
The negative power absorption in low pressure plasmas is investigated by means of an analyical model which couples Boltzmanns equation and the quasi-stationary Maxwells equation. Exploiting standard Hilbert space methods an explicit solution for both , the electric field and the distribution function of the electrons for a bounded discharge configuration subject to an unsymmetrical excitation has been found for the first time. The model is applied to a low pressure inductively coupled plasma discharge. In this context particularly the anomalous skin effect and the effect of phase mixing is discussed. The analytical solution is compared with results from electromagnetic full wave particle in cell simulations. Excellent agreement between the analytical and the numerical results is found.
The aim of this work is to provide an understanding of detachment at TCV with emphasis on analysis of the Balmer line emission. A new Divertor Spectroscopy System has been developed for this purpose. Further development of Balmer line analysis techni ques has allowed detailed information to be extracted from the three-body recombination contribution to the n=7 Balmer line intensity. During density ramps, the plasma at the target detaches as inferred from a drop in ion current to the target. At the same time the Balmer $6rightarrow2$ and $7rightarrow2$ line emission near the target is dominated by recombination. As the core density increases further, the density and recombination rate are rising all along the outer leg to the x-point while remaining highest at the target. Even at the highest core densities accessed (Greenwald fraction 0.7) the peaks in recombination and density may have moved not more than a few cm poloidally away from the target which is different to other, higher density tokamaks, where both the peak in recombination and density continue to move towards the x-point as the core density is increased. The inferred magnitude of recombination is small compared to the target ion current at the time detachment (particle flux drop) starts at the target. However, recombination may be having more localized effects (to a flux tube) which we cannot discern at this time. Later, at the highest densities achieved, the total recombination does reach levels similar to the particle flux.
We report on experimental evidence of visco-elastic effects in a strongly coupled dusty plasma through investigations of the propagation characteristics of low frequency dust acoustic waves and by excitations of transverse shear waves in a DC discharge Argon plasma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا