ﻻ يوجد ملخص باللغة العربية
The negative power absorption in low pressure plasmas is investigated by means of an analyical model which couples Boltzmanns equation and the quasi-stationary Maxwells equation. Exploiting standard Hilbert space methods an explicit solution for both, the electric field and the distribution function of the electrons for a bounded discharge configuration subject to an unsymmetrical excitation has been found for the first time. The model is applied to a low pressure inductively coupled plasma discharge. In this context particularly the anomalous skin effect and the effect of phase mixing is discussed. The analytical solution is compared with results from electromagnetic full wave particle in cell simulations. Excellent agreement between the analytical and the numerical results is found.
The kinetic origin of resonance phenomena in capacitively coupled radio frequency plasmas is discovered based on particle-based numerical simulations. The analysis of the spatio-temporal distributions of plasma parameters such as the densities of hot
In this work negative-ion production on the surface of a sample negatively DC biased in a hydrogen plasma is studied. The negative ions created under the positive ion bombardment are accelerated towards the plasma, self-extracted and detected accordi
Global gradient driven GENE gyrokinetic simulations are used to investigate TCV plasmas with negative triangularity. Considering a limited L-mode plasma, corresponding to an experimental triangularity scan, numerical results are able to reproduce the
A minimal model for magnetic reconnection and, generally, low-frequency dynamics in low-beta plasmas is proposed. The model combines analytical and computational simplicity with physical realizability: it is a rigorous limit of gyrokinetics for plasm
Reduced fluid models including electron inertia and ion finite Larmor radius corrections are derived asymptotically, both from fluid basic equations and from a gyrofluid model. They apply to collisionless plasmas with small ion-to-electron equilibriu