ﻻ يوجد ملخص باللغة العربية
Geo-distributed private chain and database have created higher performance requirements for consistency models. However, with millisecond network latency between nodes, the widely used leader-based SMR models cause frequent retransmission of logs since they cannot know the logs replication status in time, which resulting in the leader costing high network and computing resource. To address the problem, we proposed a Leader Confirmation based Replication (LCR) model. First, we demonstrate the efficacy of the approach by designing the Future-Log Replication model, which the followers are responsible for non-transactional log replication. It reduces the leaders network load using the signal log. Secondly, we designed a Generation Re-replication strategy, which can ensure the security and consistency of future-logs when the number of nodes changes. Finally, we implemented LCR-Raft and designed experiments. The results show that in the single-ms network latency environments, LCR-Raft can provide 1.5X higher TPS, reduces transactional data response time 40%-60%, and network traffic by 20%-30% with acceptable network traffic and CPU cost on followers. Besides, LCR can provide high portability since it does not change the number of leader and election process.
Crowdsourced live video streaming (livecast) services such as Facebook Live, YouNow, Douyu and Twitch are gaining more momentum recently. Allocating the limited resources in a cost-effective manner while maximizing the Quality of Service (QoS) throug
We address the problem of content replication in large distributed content delivery networks, composed of a data center assisted by many small servers with limited capabilities and located at the edge of the network. The objective is to optimize the
With the emergence of smart cities, Internet of Things (IoT) devices as well as deep learning technologies have witnessed an increasing adoption. To support the requirements of such paradigm in terms of memory and computation, joint and real-time dee
We consider distributed optimization under communication constraints for training deep learning models. We propose a new algorithm, whose parameter updates rely on two forces: a regular gradient step, and a corrective direction dictated by the curren
This paper addresses the problem of target detection and localisation in a limited area using multiple coordinated agents. The swarm of Unmanned Aerial Vehicles (UAVs) determines the position of the dispersion of stack effluents to a gas plume in a c