ﻻ يوجد ملخص باللغة العربية
With the emergence of smart cities, Internet of Things (IoT) devices as well as deep learning technologies have witnessed an increasing adoption. To support the requirements of such paradigm in terms of memory and computation, joint and real-time deep co-inference framework with IoT synergy was introduced. However, the distribution of Deep Neural Networks (DNN) has drawn attention to the privacy protection of sensitive data. In this context, various threats have been presented, including black-box attacks, where a malicious participant can accurately recover an arbitrary input fed into his device. In this paper, we introduce a methodology aiming to secure the sensitive data through re-thinking the distribution strategy, without adding any computation overhead. First, we examine the characteristics of the model structure that make it susceptible to privacy threats. We found that the more we divide the model feature maps into a high number of devices, the better we hide proprieties of the original image. We formulate such a methodology, namely DistPrivacy, as an optimization problem, where we establish a trade-off between the latency of co-inference, the privacy level of the data, and the limited-resources of IoT participants. Due to the NP-hardness of the problem, we introduce an online heuristic that supports heterogeneous IoT devices as well as multiple DNNs and datasets, making the pervasive system a general-purpose platform for privacy-aware and low decision-latency applications.
Wireless sensor networks (WSN) are fundamental to the Internet of Things (IoT) by bridging the gap between the physical and the cyber worlds. Anomaly detection is a critical task in this context as it is responsible for identifying various events of
Age of Information (AoI) has gained importance as a Key Performance Indicator (KPI) for characterizing the freshness of information in information-update systems and time-critical applications. Recent theoretical research on the topic has generated s
In the last decade, many semantic-based routing protocols had been designed for peer-to-peer systems. However, they are not suitable for IoT systems, mainly due to their high demands in memory and computing power which are not available in many IoT d
Geo-distributed private chain and database have created higher performance requirements for consistency models. However, with millisecond network latency between nodes, the widely used leader-based SMR models cause frequent retransmission of logs sin
In this demonstration, we present a privacy-preserving epidemic surveillance system. Recently, many countries that suffer from coronavirus crises attempt to access citizens location data to eliminate the outbreak. However, it raises privacy concerns