ترغب بنشر مسار تعليمي؟ اضغط هنا

A new analytical approximation of luminosity distance by optimal HPM-Pade technique

248   0   0.0 ( 0 )
 نشر من قبل Tong-Jie Zhang Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By the use of homotopy perturbation method-Pade (HPM-Pade) technique, a new analytical approximation of luminosity distance in the flat universe is proposed, which has the advantage of significant improvement for accuracy in approximating luminosity distance over cosmological redshift range within $0leq zleq 2.5$. Then we confront the analytical expression of luminosity distance that is obtained by our new approach with the observational data, for the purpose of checking whether it works well. In order to probe the robustness of the proposed method, we also confront it to supernova type Ia and recent data on the Hubble expansion rate $H(z)$. Markov Chain Monte Carlo (MCMC) code emcee is used in the data fitting. The result indicates that it works fairly well.



قيم البحث

اقرأ أيضاً

150 - Bo Yu , Zi-Hua Wang , De-Zi Liu 2021
We propose a new algorithm for computing the luminosity distance in the flat universe with a cosmological constant based on Shchigolevs homotopy perturbation method, where the optimization idea is applied to prevent the arbitrariness of initial value choice in Shchigolevs homotopy. Compared with the some existing numerical methods, the result of numerical simulation shows that our algorithm is a very promising and powerful technique for computing the luminosity distance, which has obvious advantages in computational accuracy,computing efficiency and robustness for a given {Omega_m}.
A distance matrix $A in mathbb R^{n times m}$ represents all pairwise distances, $A_{ij}=mathrm{d}(x_i,y_j)$, between two point sets $x_1,...,x_n$ and $y_1,...,y_m$ in an arbitrary metric space $(mathcal Z, mathrm{d})$. Such matrices arise in various computational contexts such as learning image manifolds, handwriting recognition, and multi-dimensional unfolding. In this work we study algorithms for low-rank approximation of distance matrices. Recent work by Bakshi and Woodruff (NeurIPS 2018) showed it is possible to compute a rank-$k$ approximation of a distance matrix in time $O((n+m)^{1+gamma}) cdot mathrm{poly}(k,1/epsilon)$, where $epsilon>0$ is an error parameter and $gamma>0$ is an arbitrarily small constant. Notably, their bound is sublinear in the matrix size, which is unachievable for general matrices. We present an algorithm that is both simpler and more efficient. It reads only $O((n+m) k/epsilon)$ entries of the input matrix, and has a running time of $O(n+m) cdot mathrm{poly}(k,1/epsilon)$. We complement the sample complexity of our algorithm with a matching lower bound on the number of entries that must be read by any algorithm. We provide experimental results to validate the approximation quality and running time of our algorithm.
Water vapor megamasers from the center of active galaxies provide a powerful tool to trace accretion disks at sub-parsec resolution and, through an entirely geometrical method, measure direct distances to galaxies up to 200 Mpc. The Megamaser Cosmolo gy Project (MCP) is formed by a team of astronomers with the aim of identifying new maser systems, and mapping their emission at high angular resolution to determine their distance. Two types of observations are necessary to measure a distance: single-dish monitoring to measure the acceleration of gas in the disk, and sensitive VLBI imaging to measure the angular size of the disk, measure the rotation curve, and model radial displacement of the maser feature. The ultimate goal of the MCP is to make a precise measurement of H0 by measuring such distances to at least 10 maser galaxies in the Hubble flow. We present here the preliminary results from a new maser system, Mrk 1419. Through a model of the rotation from the systemic masers assuming a narrow ring, and combining these results with the acceleration measurement from the Green Bank Telescope, we determine a distance to Mrk 1419 of 81pm10 Mpc. Given that the disk shows a significant warp that may not be entirely traced by our current observations, more sensitive observations and more sophisticated disk modeling will be essential to improve our distance estimation to this galaxy.
We derive a luminosity distance formula for the varying speed of light (VSL) theory which involves higher order characteristics of expansion such as jerk, snap and lerk which can test the impact of varying $c$ onto the evolution of the universe. We s how that the effect of varying $c$ is possible to be isolated due to the relations connecting observational parameters already by measuring the second-order term in redshift $z$ unless there is a redundancy between the curvature and an exotic fluid of cosmic strings scaling the same way as the curvature.
120 - D. Watson 2011
Accurate distances to celestial objects are key to establishing the age and energy density of the Universe and the nature of dark energy. A distance measure using active galactic nuclei (AGN) has been sought for more than forty years, as they are ext remely luminous and can be observed at very large distances. We report here the discovery of an accurate luminosity distance measure using AGN. We use the tight relationship between the luminosity of an AGN and the radius of its broad line region established via reverberation mapping to determine the luminosity distances to a sample of 38 AGN. All reliable distance measures up to now have been limited to moderate redshift -- AGN will, for the first time, allow distances to be estimated to z~4, where variations of dark energy and alternate gravity theories can be probed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا