ﻻ يوجد ملخص باللغة العربية
Water vapor megamasers from the center of active galaxies provide a powerful tool to trace accretion disks at sub-parsec resolution and, through an entirely geometrical method, measure direct distances to galaxies up to 200 Mpc. The Megamaser Cosmology Project (MCP) is formed by a team of astronomers with the aim of identifying new maser systems, and mapping their emission at high angular resolution to determine their distance. Two types of observations are necessary to measure a distance: single-dish monitoring to measure the acceleration of gas in the disk, and sensitive VLBI imaging to measure the angular size of the disk, measure the rotation curve, and model radial displacement of the maser feature. The ultimate goal of the MCP is to make a precise measurement of H0 by measuring such distances to at least 10 maser galaxies in the Hubble flow. We present here the preliminary results from a new maser system, Mrk 1419. Through a model of the rotation from the systemic masers assuming a narrow ring, and combining these results with the acceleration measurement from the Green Bank Telescope, we determine a distance to Mrk 1419 of 81pm10 Mpc. Given that the disk shows a significant warp that may not be entirely traced by our current observations, more sensitive observations and more sophisticated disk modeling will be essential to improve our distance estimation to this galaxy.
Accurate distances to celestial objects are key to establishing the age and energy density of the Universe and the nature of dark energy. A distance measure using active galactic nuclei (AGN) has been sought for more than forty years, as they are ext
Type IIP supernovae are recognized as independent extragalactic distance indicators, however, keeping in view of the diverse nature of their observed properties as well as the availability of good quality data, more and newer events need to be tested
We present upper limits on the X-ray emission for three neutron stars. For PSR J1840$-$1419, with a characteristic age of 16.5 Myr, we calculate a blackbody temperature upper limit (at 99% confidence) of $kT_{mathrm{bb}}^{infty}<24^{+17}_{-10}$ eV, m
We report the discovery of a luminosity distance estimator using Active Galactic Nuclei (AGN). We combine the correlation between the X-ray variability amplitude and the Black Hole (BH) mass with the single epoch spectra BH mass estimates which depen
The quantitative spectral analysis of medium resolution optical spectra of A and B supergiants obtained with DEIMOS and ESI at the Keck Telescopes is used to determine a distance modulus of 24.93 +/- 0.11 mag for the Triangulum Galaxy M33. The analys