ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional topological insulator state in double HgTe quantum well

133   0   0.0 ( 0 )
 نشر من قبل Gennady Gusev M
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The two-dimensional topological insulator phase has been observed previously in single HgTe-based quantum wells with inverted subband ordering. In double quantum wells (DQWs), coupling between the layers introduces additional degrees of freedom leading to a rich phase picture. By studying local and nonlocal resistance in HgTe-based DQWs, we observe both the gapless semimetal phase and the topological insulator phase, depending on parameters of the samples and according to theoretical predictions. Our work establishes the DQWs as a promising platform for realization of multilayer topological insulators.



قيم البحث

اقرأ أيضاً

The thermoelectric response of HgTe quantum wells in the state of two-dimensional topological insulator (2D TI) has been studied experimentally. Ambipolar thermopower, typical for an electron-hole system, has been observed across the charge neutralit y point, where the carrier type changes from electrons to holes according to the resistance measurements. The hole-type thermopower is much stronger than the electron-type one. The thermopower linearly increases with temperature. We present a theoretical model which accounts for both the edge and bulk contributions to the electrical conductivity and thermoelectric effect in a 2D TI, including the effects of edge to bulk leakage. The model, contrary to previous theoretical studies, demonstrates that the 2D TI is not expected to show anomalies of thermopower near the band conductivity threshold, which is consistent with our experimental results. Based on the experimental data and theoretical analysis, we conclude that the observed thermopower is mostly of the bulk origin, while the resistance is determined by both the edge and bulk transport.
The microwave photoresistance of a two-dimensional topological insulator in a HgTe quantum well with an inverted spectrum has been experimentally studied under irradiation at frequencies of 110-169 GHz. Two mechanisms of formation of this photoresist ance have been revealed. The first mechanism is due to transitions between the dispersion branches of edge current states, whereas the second mechanism is caused by the action of radiation on the bulk of the quantum well.
We have measured the differential resistance in a two-dimensional topological insulator (2DTI) in a HgTe quantum well, as a function of the applied dc current. The transport near the charge neutrality point is characterized by a pair of counter propa gating gapless edge modes. In the presence of an electric field, the energy is transported by counter propagating channels in the opposite direction. We test a hot carrier effect model and demonstrate that the energy transfer complies with the Wiedemann Franz law near the charge neutrality point in the edge transport regime.
The results of experimental study of the magnetoresistivity, the Hall and Shubnikov-de Haas effects for the heterostructure with HgTe quantum well of 20.2 nm width are reported. The measurements were performed on the gated samples over the wide range of electron and hole densities including vicinity of a charge neutrality point. Analyzing the data we conclude that the energy spectrum is drastically different from that calculated in framework of $kP$-model. So, the hole effective mass is equal to approximately $0.2 m_0$ and practically independent of the quasimomentum ($k$) up to $k^2gtrsim 0.7times 10^{12}$ cm$^{-2}$, while the theory predicts negative (electron-like) effective mass up to $k^2=6times 10^{12}$ cm$^{-2}$. The experimental effective mass near k=0, where the hole energy spectrum is electron-like, is close to $-0.005 m_0$, whereas the theoretical value is about $-0.1 m_0$.
157 - Markus Koenig 2007
Recent theory predicted that the Quantum Spin Hall Effect, a fundamentally novel quantum state of matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells. We have fabricated such sample structures with low density and high mobility in which we can tune, through an external gate voltage, the carrier conduction from n-type to the p-type, passing through an insulating regime. For thin quantum wells with well width d < 6.3 nm, the insulating regime shows the conventional behavior of vanishingly small conductance at low temperature. However, for thicker quantum wells (d > 6.3 nm), the nominally insulating regime shows a plateau of residual conductance close to 2e^2/h. The residual conductance is independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance is destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d = 6.3 nm, is also independently determined from the magnetic field induced insulator to metal transition. These observations provide experimental evidence of the quantum spin Hall effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا