ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian neural networks for weak solution of PDEs with uncertainty quantification

509   0   0.0 ( 0 )
 نشر من قبل Xiaoxuan Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Solving partial differential equations (PDEs) is the canonical approach for understanding the behavior of physical systems. However, large scale solutions of PDEs using state of the art discretization techniques remains an expensive proposition. In this work, a new physics-constrained neural network (NN) approach is proposed to solve PDEs without labels, with a view to enabling high-throughput solutions in support of design and decision-making. Distinct from existing physics-informed NN approaches, where the strong form or weak form of PDEs are used to construct the loss function, we write the loss function of NNs based on the discretized residual of PDEs through an efficient, convolutional operator-based, and vectorized implementation. We explore an encoder-decoder NN structure for both deterministic and probabilistic models, with Bayesian NNs (BNNs) for the latter, which allow us to quantify both epistemic uncertainty from model parameters and aleatoric uncertainty from noise in the data. For BNNs, the discretized residual is used to construct the likelihood function. In our approach, both deterministic and probabilistic convolutional layers are used to learn the applied boundary conditions (BCs) and to detect the problem domain. As both Dirichlet and Neumann BCs are specified as inputs to NNs, a single NN can solve for similar physics, but with different BCs and on a number of problem domains. The trained surrogate PDE solvers can also make interpolating and extrapolating (to a certain extent) predictions for BCs that they were not exposed to during training. Such surrogate models are of particular importance for problems, where similar types of PDEs need to be repeatedly solved for many times with slight variations. We demonstrate the capability and performance of the proposed framework by applying it to steady-state diffusion, linear elasticity, and nonlinear elasticity.



قيم البحث

اقرأ أيضاً

Bayesian Neural Networks (BNNs) place priors over the parameters in a neural network. Inference in BNNs, however, is difficult; all inference methods for BNNs are approximate. In this work, we empirically compare the quality of predictive uncertainty estimates for 10 common inference methods on both regression and classification tasks. Our experiments demonstrate that commonly used metrics (e.g. test log-likelihood) can be misleading. Our experiments also indicate that inference innovations designed to capture structure in the posterior do not necessarily produce high quality posterior approximations.
109 - Jeremiah Zhe Liu 2019
This work develops rigorous theoretical basis for the fact that deep Bayesian neural network (BNN) is an effective tool for high-dimensional variable selection with rigorous uncertainty quantification. We develop new Bayesian non-parametric theorems to show that a properly configured deep BNN (1) learns the variable importance effectively in high dimensions, and its learning rate can sometimes break the curse of dimensionality. (2) BNNs uncertainty quantification for variable importance is rigorous, in the sense that its 95% credible intervals for variable importance indeed covers the truth 95% of the time (i.e., the Bernstein-von Mises (BvM) phenomenon). The theoretical results suggest a simple variable selection algorithm based on the BNNs credible intervals. Extensive simulation confirms the theoretical findings and shows that the proposed algorithm outperforms existing classic and neural-network-based variable selection methods, particularly in high dimensions.
Multivariate Hawkes processes are commonly used to model streaming networked event data in a wide variety of applications. However, it remains a challenge to extract reliable inference from complex datasets with uncertainty quantification. Aiming tow ards this, we develop a statistical inference framework to learn causal relationships between nodes from networked data, where the underlying directed graph implies Granger causality. We provide uncertainty quantification for the maximum likelihood estimate of the network multivariate Hawkes process by providing a non-asymptotic confidence set. The main technique is based on the concentration inequalities of continuous-time martingales. We compare our method to the previously-derived asymptotic Hawkes process confidence interval, and demonstrate the strengths of our method in an application to neuronal connectivity reconstruction.
This work affords new insights into Bayesian CART in the context of structured wavelet shrinkage. The main thrust is to develop a formal inferential framework for Bayesian tree-based regression. We reframe Bayesian CART as a g-type prior which depart s from the typical wavelet product priors by harnessing correlation induced by the tree topology. The practically used Bayesian CART priors are shown to attain adaptive near rate-minimax posterior concentration in the supremum norm in regression models. For the fundamental goal of uncertainty quantification, we construct adaptive confidence bands for the regression function with uniform coverage under self-similarity. In addition, we show that tree-posteriors enable optimal inference in the form of efficient confidence sets for smooth functionals of the regression function.
112 - Rui Tuo , Wenjia Wang 2020
Bayesian optimization is a class of global optimization techniques. It regards the underlying objective function as a realization of a Gaussian process. Although the outputs of Bayesian optimization are random according to the Gaussian process assump tion, quantification of this uncertainty is rarely studied in the literature. In this work, we propose a novel approach to assess the output uncertainty of Bayesian optimization algorithms, in terms of constructing confidence regions of the maximum point or value of the objective function. These regions can be computed efficiently, and their confidence levels are guaranteed by newly developed uniform error bounds for sequential Gaussian process regression. Our theory provides a unified uncertainty quantification framework for all existing sequential sampling policies and stopping criteria.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا