ﻻ يوجد ملخص باللغة العربية
We define a class of properties on random plane trees, which we call subtree additive properties, inspired by the combinatorics of certain biologically-interesting properties in a plane tree model of RNA secondary structure. The class of subtree additive properties includes the Wiener index and path length (total ladder distance and total ladder contact distance, respectively, in the biological context). We then investigate the asymptotic distribution of these subtree additive properties on a random plane tree distributed according to a Gibbs distribution arising from the Nearest Neighbor Thermodynamic Model for RNA secondary structure. We show that for any property in the class considered, there is a constant that translates the uniformly weighted random variable to the Gibbs distribution weighted random variable (and we provide the constant). We also relate the asymptotic distribution of another class of properties, which we call simple subtree additive properties, to the asymptotic distribution of the path length, both in the uniformly weighted case. The primary proof techniques in this paper come from analytic combinatorics, and most of our results follow from relating the moments of known and unknown distributions and showing that this is sufficient for convergence.
A subtree of a tree is any induced subgraph that is again a tree (i.e., connected). The mean subtree order of a tree is the average number of vertices of its subtrees. This invariant was first analyzed in the 1980s by Jamison. An intriguing open ques
Among many topological indices of trees the sum of distances $sigma(T)$ and the number of subtrees $F(T)$ have been a long standing pair of graph invariants that are well known for their negative correlation. That is, among various given classes of t
We investigate the asymptotic behavior of several variants of the scan statistic applied to empirical distributions, which can be applied to detect the presence of an anomalous interval with any length. Of particular interest is Studentized scan stat
Fast approximate nearest neighbor (NN) search in large databases is becoming popular. Several powerful learning-based formulations have been proposed recently. However, not much attention has been paid to a more fundamental question: how difficult is
Suppose $V$ is an $n$-element set where for each $x in V$, the elements of $V setminus {x}$ are ranked by their similarity to $x$. The $K$-nearest neighbor graph is a directed graph including an arc from each $x$ to the $K$ points of $V setminus {x}$