ﻻ يوجد ملخص باللغة العربية
A subtree of a tree is any induced subgraph that is again a tree (i.e., connected). The mean subtree order of a tree is the average number of vertices of its subtrees. This invariant was first analyzed in the 1980s by Jamison. An intriguing open question raised by Jamison asks whether the maximum of the mean subtree order, given the order of the tree, is always attained by some caterpillar. While we do not completely resolve this conjecture, we find some evidence in its favor by proving different features of trees that attain the maximum. For example, we show that the diameter of a tree of order $n$ with maximum mean subtree order must be very close to $n$. Moreover, we show that the maximum mean subtree order is equal to $n - 2log_2 n + O(1)$. For the local mean subtree order, which is the average order of all subtrees containing a fixed vertex, we can be even more precise: we show that its maximum is always attained by a broom and that it is equal to $n - log_2 n + O(1)$.
In this paper we investigate an extremal problem on binary phylogenetic trees. Given two such trees $T_1$ and $T_2$, both with leaf-set ${1,2,...,n}$, we are interested in the size of the largest subset $S subseteq {1,2,...,n}$ of leaves in a common
Among many topological indices of trees the sum of distances $sigma(T)$ and the number of subtrees $F(T)$ have been a long standing pair of graph invariants that are well known for their negative correlation. That is, among various given classes of t
A subset of vertices is a {it maximum independent set} if no two of the vertices are adjacent and the subset has maximum cardinality. A subset of vertices is called a {it maximum dissociation set} if it induces a subgraph with vertex degree at most 1
We define a class of properties on random plane trees, which we call subtree additive properties, inspired by the combinatorics of certain biologically-interesting properties in a plane tree model of RNA secondary structure. The class of subtree addi
We consider the quantity $P(G)$ associated with a graph $G$ that is defined as the probability that a randomly chosen subtree of $G$ is spanning. Motivated by conjectures due to Chin, Gordon, MacPhee and Vincent on the behaviour of this graph invaria