ﻻ يوجد ملخص باللغة العربية
The output of text-to-image synthesis systems should be coherent, clear, photo-realistic scenes with high semantic fidelity to their conditioned text descriptions. Our Cross-Modal Contrastive Generative Adversarial Network (XMC-GAN) addresses this challenge by maximizing the mutual information between image and text. It does this via multiple contrastive losses which capture inter-modality and intra-modality correspondences. XMC-GAN uses an attentional self-modulation generator, which enforces strong text-image correspondence, and a contrastive discriminator, which acts as a critic as well as a feature encoder for contrastive learning. The quality of XMC-GANs output is a major step up from previous models, as we show on three challenging datasets. On MS-COCO, not only does XMC-GAN improve state-of-the-art FID from 24.70 to 9.33, but--more importantly--people prefer XMC-GAN by 77.3 for image quality and 74.1 for image-text alignment, compared to three other recent models. XMC-GAN also generalizes to the challenging Localized Narratives dataset (which has longer, more detailed descriptions), improving state-of-the-art FID from 48.70 to 14.12. Lastly, we train and evaluate XMC-GAN on the challenging Open Images data, establishing a strong benchmark FID score of 26.91.
Cross-modal attention mechanisms have been widely applied to the image-text matching task and have achieved remarkable improvements thanks to its capability of learning fine-grained relevance across different modalities. However, the cross-modal atte
Learning transferable and domain adaptive feature representations from videos is important for video-relevant tasks such as action recognition. Existing video domain adaptation methods mainly rely on adversarial feature alignment, which has been deri
Conditional image generation is the task of generating diverse images using class label information. Although many conditional Generative Adversarial Networks (GAN) have shown realistic results, such methods consider pairwise relations between the em
Existed pre-training methods either focus on single-modal tasks or multi-modal tasks, and cannot effectively adapt to each other. They can only utilize single-modal data (i.e. text or image) or limited multi-modal data (i.e. image-text pairs). In thi
In image-to-image translation, each patch in the output should reflect the content of the corresponding patch in the input, independent of domain. We propose a straightforward method for doing so -- maximizing mutual information between the two, usin