ﻻ يوجد ملخص باللغة العربية
The observation of the electrically tunable and highly confined plasmons in graphene has stimulated the exploration of interesting properties of plasmons in other two dimensional materials. Recently, hyperbolic plasmon resonance modes are observed in exfoliated WTe2 films, a type-II Weyl semimetal with layered structure, providing a platform for the assembly of plasmons with hyperbolicity and exotic topological properties. However, the plasmon modes were observed in relatively thick and small-area films, which restrict the tunability and application for plasmons. Here, large-area (~ cm) WTe2 films with different thickness are grown by chemical vapor deposition method, in which plasmon resonance modes are observed in films with different thickness down to about 8 nm. Hybridization of plasmon and surface polar phonons of the substrate is revealed by mapping the plasmon dispersion. The plasmon frequency is demonstrated to be tunable by changing the temperature and film thickness. Our results facilitate the development of a tunable and scalable WTe2 plasmonic system for revealing topological properties and towards various applications in sensing, imaging and light modulation.
The ability to modulate light at high speeds is of paramount importance for telecommunications, information processing, and medical imaging technologies. This has stimulated intense efforts to master optoelectronic switching at visible and near-infra
Tunable terahertz plasmons are essential for reconfigurable photonics, which have been demonstrated in graphene through gating, though with relatively weak responses. Here, we demonstrate strong terahertz plasmons in graphite thin films via infrared
We report a detailed study on low-frequency 1/f-noise in large-area molecular-beam epitaxy grown thin (10 nm) films of topological insulators as a function of temperature, gate voltage, and magnetic field. When the Fermi energy is within the bulk val
Since the discovery of extremely large non-saturating magnetoresistance (MR) in WTe2, much effort has been devoted to understanding the underlying mechanism, which is still under debate. Here, we explicitly identify the dominant physical origin of th
Direct, tunable coupling between individually assembled graphene layers is a next step towards designer two-dimensional (2D) crystal systems, with relevance for fundamental studies and technological applications. Here we describe the fabrication and