ﻻ يوجد ملخص باللغة العربية
Covariance matrix estimation techniques require high acquisition costs that challenge the sampling systems storing and transmission capabilities. For this reason, various acquisition approaches have been developed to simultaneously sense and compress the relevant information of the signal using random projections. However, estimating the covariance matrix from the random projections is an ill-posed problem that requires further information about the data, such as sparsity, low rank, or stationary behavior. Furthermore, this approach fails using high compression ratios. Therefore, this paper proposes an algorithm based on the projected gradient method to recover a low-rank or Toeplitz approximation of the covariance matrix. The proposed algorithm divides the data into subsets projected onto different subspaces, assuming that each subset contains an approximation of the signal statistics, improving the inverse problems condition. The error induced by this assumption is analytically derived along with the convergence guarantees of the proposed method. Extensive simulations show that the proposed algorithm can effectively recover the covariance matrix of hyperspectral images with high compression ratios (8-15% approx) in noisy scenarios. Additionally, simulations and theoretical results show that filtering the gradient reduces the estimators error recovering up to twice the number of eigenvectors.
In the area of magnetic resonance imaging (MRI), an extensive range of non-linear reconstruction algorithms have been proposed that can be used with general Fourier subsampling patterns. However, the design of these subsampling patterns has typically
Conventional approaches of sampling signals follow the celebrated theorem of Nyquist and Shannon. Compressive sampling, introduced by Donoho, Romberg and Tao, is a new paradigm that goes against the conventional methods in data acquisition and provid
The classical problem of phase retrieval arises in various signal acquisition systems. Due to the ill-posed nature of the problem, the solution requires assumptions on the structure of the signal. In the last several years, sparsity and support-based
Most deep network methods for compressive sensing reconstruction suffer from the black-box characteristic of DNN. In this paper, a deep neural network with interpretable motion estimation named CSMCNet is proposed. The network is able to realize high
Deep neural networks give state-of-the-art accuracy for reconstructing images from few and noisy measurements, a problem arising for example in accelerated magnetic resonance imaging (MRI). However, recent works have raised concerns that deep-learnin