ﻻ يوجد ملخص باللغة العربية
Most deep network methods for compressive sensing reconstruction suffer from the black-box characteristic of DNN. In this paper, a deep neural network with interpretable motion estimation named CSMCNet is proposed. The network is able to realize high-quality reconstruction of video compressive sensing by unfolding the iterative steps of optimization based algorithms. A DNN based, multi-hypothesis motion estimation module is designed to improve the reconstruction quality, and a residual module is employed to further narrow down the gap between re-construction results and original signal in our proposed method. Besides, we propose an interpolation module with corresponding training strategy to realize scalable CS reconstruction, which is capable of using the same model to decode various compression ratios. Experiments show that a PSNR of 29.34dB can be achieved at 2% CS ratio (compressed by 98%), which is superior than other state-of-the-art methods. Moreover, the interpolation module is proved to be effective, with significant cost saving and acceptable performance losses.
To capture high-speed videos using a two-dimensional detector, video snapshot compressive imaging (SCI) is a promising system, where the video frames are coded by different masks and then compressed to a snapshot measurement. Following this, efficien
Video snapshot compressive imaging (SCI) captures a sequence of video frames in a single shot using a 2D detector. The underlying principle is that during one exposure time, different masks are imposed on the high-speed scene to form a compressed mea
Deep learning has been used to image compressive sensing (CS) for enhanced reconstruction performance. However, most existing deep learning methods train different models for different subsampling ratios, which brings additional hardware burden. In t
Compressive sensing magnetic resonance imaging (CS-MRI) accelerates the acquisition of MR images by breaking the Nyquist sampling limit. In this work, a novel generative adversarial network (GAN) based framework for CS-MRI reconstruction is proposed.
Compressive sensing (CS) is widely used to reduce the acquisition time of magnetic resonance imaging (MRI). Although state-of-the-art deep learning based methods have been able to obtain fast, high-quality reconstruction of CS-MR images, their main d