ﻻ يوجد ملخص باللغة العربية
Click-Through Rate (CTR) prediction, whose aim is to predict the probability of whether a user will click on an item, is an essential task for many online applications. Due to the nature of data sparsity and high dimensionality of CTR prediction, a key to making effective prediction is to model high-order feature interaction. An efficient way to do this is to perform inner product of feature embeddings with self-attentive neural networks. To better model complex feature interaction, in this paper we propose a novel DisentanglEd Self-atTentIve NEtwork (DESTINE) framework for CTR prediction that explicitly decouples the computation of unary feature importance from pairwise interaction. Specifically, the unary term models the general importance of one feature on all other features, whereas the pairwise interaction term contributes to learning the pure impact for each feature pair. We conduct extensive experiments using two real-world benchmark datasets. The results show that DESTINE not only maintains computational efficiency but achieves consistent improvements over state-of-the-art baselines.
Cross domain recommender system constitutes a powerful method to tackle the cold-start and sparsity problem by aggregating and transferring user preferences across multiple category domains. Therefore, it has great potential to improve click-through-
Click-Through Rate (CTR) prediction is one of the most important machine learning tasks in recommender systems, driving personalized experience for billions of consumers. Neural architecture search (NAS), as an emerging field, has demonstrated its ca
Click-Through Rate prediction is an important task in recommender systems, which aims to estimate the probability of a user to click on a given item. Recently, many deep models have been proposed to learn low-order and high-order feature interactions
Inspired by the success of deep learning, recent industrial Click-Through Rate (CTR) prediction models have made the transition from traditional shallow approaches to deep approaches. Deep Neural Networks (DNNs) are known for its ability to learn non
Click-through rate (CTR) prediction is a critical task in online advertising systems. Models like Deep Neural Networks (DNNs) are simple but stateless. They consider each target ad independently and cannot directly extract useful information containe