ﻻ يوجد ملخص باللغة العربية
Click-through rate (CTR) prediction is a critical task in online advertising systems. Models like Deep Neural Networks (DNNs) are simple but stateless. They consider each target ad independently and cannot directly extract useful information contained in users historical ad impressions and clicks. In contrast, models like Recurrent Neural Networks (RNNs) are stateful but complex. They model temporal dependency between users sequential behaviors and can achieve improved prediction performance than DNNs. However, both the offline training and online prediction process of RNNs are much more complex and time-consuming. In this paper, we propose Memory Augmented DNN (MA-DNN) for practical CTR prediction services. In particular, we create two external memory vectors for each user, memorizing high-level abstractions of what a user possibly likes and dislikes. The proposed MA-DNN achieves a good compromise between DNN and RNN. It is as simple as DNN, but has certain ability to exploit useful information contained in users historical behaviors as RNN. Both offline and online experiments demonstrate the effectiveness of MA-DNN for practical CTR prediction services. Actually, the memory component can be augmented to other models as well (e.g., the Wide&Deep model).
Click-Through Rate prediction is an important task in recommender systems, which aims to estimate the probability of a user to click on a given item. Recently, many deep models have been proposed to learn low-order and high-order feature interactions
Click-through rate (CTR) prediction is a critical task in online advertising systems. Existing works mainly address the single-domain CTR prediction problem and model aspects such as feature interaction, user behavior history and contextual informati
Click-Through Rate (CTR) prediction is one of the most important machine learning tasks in recommender systems, driving personalized experience for billions of consumers. Neural architecture search (NAS), as an emerging field, has demonstrated its ca
Cross domain recommender system constitutes a powerful method to tackle the cold-start and sparsity problem by aggregating and transferring user preferences across multiple category domains. Therefore, it has great potential to improve click-through-
Click-through rate (CTR) prediction is one of the most central tasks in online advertising systems. Recent deep learning-based models that exploit feature embedding and high-order data nonlinearity have shown dramatic successes in CTR prediction. How