ترغب بنشر مسار تعليمي؟ اضغط هنا

Realization of a scalable Laguerre-Gaussian mode sorter based on a robust radial mode sorter

123   0   0.0 ( 0 )
 نشر من قبل Dongzhi Fu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The transverse structure of light is recognized as a resource that can be used to encode information onto photons and has been shown to be useful to enhance communication capacity as well as resolve point sources in superresolution imaging. The Laguerre-Gaussian (LG) modes form a complete and orthonormal basis set and are described by a radial index p and an orbital angular momentum (OAM) index l. Earlier works have shown how to build a sorter for the radial index p or/and the OAM index l of LG modes, but a scalable and dedicated LG mode sorter which simultaneous determinate p and l is immature. Here we propose and experimentally demonstrate a scheme to accomplish complete LG mode sorting, which consists of a novel, robust radial mode sorter that can be used to couple radial modes to polarizations, an l-dependent phase shifter and an OAM mode sorter. Our scheme is in principle efficient, scalable, and crosstalk-free, and therefore has potential for applications in optical communications, quantum information technology, superresolution imaging, and fiber optics.



قيم البحث

اقرأ أيضاً

The Hermite-Gaussian (HG) modes, sometimes also referred to as transverse electromagnetic modes in free space, form a complete and orthonormal basis that have been extensively used to describe optical fields. In addition, these modes have been shown to be helpful to enhance information capacity of optical communications as well as to achieve super-resolution imaging in microscopy. Here we propose and present the realization of an efficient, robust mode sorter that can sort a large number of HG modes based on the relation between HG modes and Laguerre-Gaussian (LG) modes. We experimentally demonstrate the sorting of 16 HG modes, and our method can be readily extended to a higher-dimensional state space in a straightforward manner. We expect that our demonstration will have direct applications in a variety of fields including fiber optics, classical and quantum communications, as well as super-resolution imaging.
Spatial resolution is one of the most important specifications of an imaging system. Recent results in quantum parameter estimation theory reveal that an arbitrarily small distance between two incoherent point sources can always be efficiently determ ined through the use of a spatial mode sorter. However, extending this procedure to a general object consisting of many incoherent point sources remains challenging, due to the intrinsic complexity of multi-parameter estimation problems. Here, we generalize the Richardson-Lucy (RL) deconvolution algorithm to address this challenge. We simulate its application to an incoherent confocal microscope, with a Zernike spatial mode sorter replacing the pinhole used in a conventional confocal microscope. We test different spatially incoherent objects of arbitrary geometry, and we find that the resolution enhancement of sorter-based microscopy is on average over 30% higher than that of a conventional confocal microscope using the standard RL deconvolution algorithm. Our method could potentially be used in diverse applications such as fluorescence microscopy and astronomical imaging.
The dimension of the state space for information encoding offered by the transverse structure of light is usually limited by the finite size of apertures. The widely used orbital angular momentum (OAM) number of Laguerre-Gaussian (LG) modes in free-s pace communications cannot achieve the theoretical maximum transmission capacity unless the radial degree of freedom is multiplexed into the protocol. While the methodology to sort the radial quantum number has been developed, the application of radial modes in quantum communications requires an additional ability to efficiently measure the superposition of LG modes in the mutually unbiased basis. Here we develop and implement a generic mode sorter that is capable of sorting the superposition of LG modes through the use of a mode converter. As a consequence, we demonstrate an 8-dimensional quantum key distribution experiment involving all three transverse degrees of freedom: spin, azimuthal, and radial quantum numbers of photons. Our protocol presents an important step towards the goal of reaching the capacity limit of a free-space link and can be useful to other applications that involve spatial modes of photons.
We present an in principle lossless sorter for radial modes of light, using accumulated Gouy phases. The experimental setups have been found by a computer algorithm, and can be intuitively understood in a geometric way. Together with the ability to s ort angular-momentum modes, we now have access to the complete 2-dimensional transverse plane of light. The device can readily be used in multiplexing classical information. On a quantum level, it is an analog of the Stern-Gerlach experiment -- significant for the discussion of fundamental concepts in quantum physics. As such, it can be applied in high-dimensional and multi-photonic quantum experiments.
Photons do not interact directly with each other, but conditional control of one beam by another can be achieved with non-linear optical media at high field intensities. It is exceedingly difficult to reach such intensities at the single photon level but proposals have been made to obtain effective interactions by scattering photons from single transitions. We report here effective interactions between photons created using a quantum dot weakly coupled to a cavity. We show that a passive single-photon non-linearity can modify the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and sort polarisation correlated photons from an uncorrelated stream using a single spin. These results pave the way for optical switches operated by single quanta of light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا