ﻻ يوجد ملخص باللغة العربية
Here we report a systematic investigation on the evolution of the structural and physical properties, including the charge density wave and superconductivity of the polycrystalline CuIr2Te4-xIx. X-ray diffraction results indicate that both of a and c lattice parameters increase linearly. The resistivity measurements indicate that the charge density wave is destabilized with slight x but reappears when x is large than 0.9. Meanwhile, the superconducting transition temperature enhances as x raises and reaches a maximum value of around 2.95 K for the optimal composition CuIr2Te3.9I0.1 followed by a slight decrease with higher iodine doping content. The specific heat jump for the optimal composition CuIr2Te3.9I0.1 is approximately 1.46, which is close to the Bardeen Cooper Schrieffer value which is 1.43, indicating it is a bulk superconductor. The results of thermodynamic heat capacity measurements under different magnetic fields, magnetization and magneto-transport measurements further suggest that CuIr2Te4-xIx bulks are type II superconductors. Finally, an electronic phase diagram for this CuIr2Te4-xIx system has been constructed. The present study provides a suitable material platform for further investigation of the interplay of the CDW and superconductivity.
We report the anomalous charge density wave (CDW) state evolution and dome-like superconductivity (SC) in CuIr2Te4-xSex series. Room temperature powder X ray-diffraction (PXRD) results indicate that CuIr2Te4-xSex compounds retain the same structure a
We report the interplay between charge-density-wave (CDW) and superconductivity of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ ($0leq x leq 0.05$) single crystals. The CDW order is gradually suppressed by Fe-doping, accompanied by the disappearance of pseudogap/M
By measuring the temperature dependence of the resistance, we investigated the effect of Cu doping on superconductivity (SC) in Cu-doped TaSe$_3$ in which the charge density wave (CDW) transition is induced by Cu doping. We observed an emergence of a
The charge response in the spin chain/ladder compound Sr_14-xCa_xCu_24O_41 is characterized by DC resistivity, low-frequency dielectric spectroscopy and optical spectroscopy. We identify a phase transition below which a charge-density wave (CDW) deve
From systematic analysis of the high pulsed magnetic field resistance data of La$_{2-x}$Sr$_x$CuO$_{4}$ thin films, we extract an experimental phase diagram for several doping values ranging from the very underdoped to the very overdoped regimes. Our