ﻻ يوجد ملخص باللغة العربية
We study the strong and radiative decays of the anti-quark-quark ground state $J^{PC} = 3^{--}$ ($n^{2 S + 1} L_J = 1^3 D_3$) nonet {$rho_{3} (1690)$, $K_{3}^{ast} (1780)$, $phi_{3} (1850)$, $omega_{3} (1670)$} in the framework of an effective quantum field theory approach, based on the $SU_mathrm{V}(3)$-flavor-symmetry. The effective model is fitted to experimental data listed by the Particle Data Group. We predict numerous experimentally unknown decay widths and branching ratios. An overall agreement of theory (fit and predictions) with experimental data confirms the $bar{q} q$ nature of the states and qualitatively validates the effective approach. Naturally, experimental clarification as well as advanced theoretical description is needed for trustworthy quantitative predictions, which is observed from some of the decay channels. Besides conventional spin-$3$ mesons, theoretical predictions for ratios of strong and radiative decays of a hypothetical glueball state $G_3 (4200)$ with $J^{PC} = 3^{--}$ are also presented.
The unflavored light meson families, namely $omega_2$, $rho_2$, and $phi_2$, are studied systematically by investigating the spectrum and the two-body strong decays allowed by Okubo-Zweig-Iizuka rule. Including the four experimentally observed states
Mesons with quantum numbers $J^{PC}=1^{-+}$ cannot be represented as simple quark-antiquark pairs. We explore hybrid configurations in the light meson sector comprising a quark, an antiquark and an excited gluon, studying the properties of such state
We use QCD sum rules to test the nature of the recently observed mesons Y(4260), Y(4350) and Y(4660), assumed to be exotic four-quark $(cbar{c}qbar{q})$ or $(cbar{c}sbar{s})$ states with $J^{PC}=1^{--}$. We work at leading order in $alpha_s$, conside
Magnetic dipole moments of the negative parity light and heavy tensor mesons are calculated within the light cone QCD sum rules method. The results are compared with the positive parity counterparts of the corresponding tensor mesons. The results of
We extend previous calculations of leading-order correlation functions of spin-0 and spin-1 light quarkonium hybrids to include QCD condensates of dimensions five and six, with a view to improving the stability of QCD sum-rules analyses in previously