ﻻ يوجد ملخص باللغة العربية
Let $n > k > t geq j geq 1$ be integers. Let $X$ be an $n$-element set, ${Xchoose k}$ the collection of its $k$-subsets. A family $mathcal F subset {Xchoose k}$ is called $t$-intersecting if $|F cap F| geq t$ for all $F, F in mathcal F$. The $j$th shadow $partial^j mathcal F$ is the collection of all $(k - j)$-subsets that are contained in some member of~$mathcal F$. Estimating $|partial^j mathcal F|$ as a function of $|mathcal F|$ is a widely used tool in extremal set theory. A classical result of the second author (Theorem ref{th:1.3}) provides such a bound for $t$-intersecting families. It is best possible for $|mathcal F| = {2k - tchoose k}$. Our main result is Theorem ref{th:1.4} which gives an asymptotically optimal bound on $|partial^j mathcal F| / |mathcal F|$ for $|mathcal F|$ slightly larger, e.g., $|mathcal F| > frac32 {2k - tchoose k}$. We provide further improvements for $|mathcal F|$ very large as well.
A fundamental result in extremal set theory is Katonas shadow intersection theorem, which extends the Kruskal-Katona theorem by giving a lower bound on the size of the shadow of an intersecting family of $k$-sets in terms of its size. We improve this
A family of sets is said to be emph{symmetric} if its automorphism group is transitive, and emph{intersecting} if any two sets in the family have nonempty intersection. Our purpose here is to study the following question: for $n, kin mathbb{N}$ with
We shall be interested in the following Erdos-Ko-Rado-type question. Fix some subset B of [n]. How large a family A of subsets of [n] can we find such that the intersection of any two sets in A contains a cyclic translate (modulo n) of B? Chung, Grah
Mubayis Conjecture states that if $mathcal{F}$ is a family of $k$-sized subsets of $[n] = {1,ldots,n}$ which, for $k geq d geq 2$, satisfies $A_1 capcdotscap A_d eq emptyset$ whenever $|A_1 cupcdotscup A_d| leq 2k$ for all distinct sets $A_1,ldots,A
For $n > 2k geq 4$ we consider intersecting families $mathcal F$ consisting of $k$-subsets of ${1, 2, ldots, n}$. Let $mathcal I(mathcal F)$ denote the family of all distinct intersections $F cap F$, $F eq F$ and $F, Fin mathcal F$. Let $mathcal A$