ترغب بنشر مسار تعليمي؟ اضغط هنا

When does the Physarum Solver Distinguish the Shortest Path from other Paths: the Transition Point and its Applications

143   0   0.0 ( 0 )
 نشر من قبل Yusheng Huang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Yusheng Huang




اسأل ChatGPT حول البحث

Physarum solver, also called the physarum polycephalum inspired algorithm (PPA), is a newly developed bio-inspired algorithm that has an inherent ability to find the shortest path in a given graph. Recent research has proposed methods to develop this algorithm further by accelerating the original PPA (OPPA)s path-finding process. However, when does the PPA ascertain that the shortest path has been found? Is there a point after which the PPA could distinguish the shortest path from other paths? By innovatively proposing the concept of the dominant path (D-Path), the exact moment, named the transition point (T-Point), when the PPA finds the shortest path can be identified. Based on the D-Path and T-Point, a newly accelerated PPA named OPPA-D using the proposed termination criterion is developed which is superior to all other baseline algorithms according to the experiments conducted in this paper. The validity and the superiority of the proposed termination criterion is also demonstrated. Furthermore, an evaluation method is proposed to provide new insights for the comparison of different accelerated OPPAs. The breakthrough of this paper lies in using D-path and T-point to terminate the OPPA. The novel termination criterion reveals the actual performance of this OPPA. This OPPA is the fastest algorithm, outperforming some so-called accelerated OPPAs. Furthermore, we explain why some existing works inappropriately claim to be accelerated algorithms is in fact a product of inappropriate termination criterion, thus giving rise to the illusion that the method is accelerated.



قيم البحث

اقرأ أيضاً

406 - Yusheng Huang 2020
Physarum polycephalum inspired algorithm (PPA), also known as the Physarum Solver, has attracted great attention. By modelling real-world problems into a graph with network flow and adopting proper equations to calculate the distance between the node s in the graph, PPA could be used to solve system optimization problems or user equilibrium problems. However, some problems such as the maximum flow (MF) problem, minimum-cost-maximum-flow (MCMF) problem, and link-capacitated traffic assignment problem (CTAP), require the flow flowing through links to follow capacity constraints. Motivated by the lack of related PPA-based research, a novel framework, the capacitated physarum polycephalum inspired algorithm (CPPA), is proposed to allow capacity constraints toward link flow in the PPA. To prove the validity of the CPPA, we developed three applications of the CPPA, i.e., the CPPA for the MF problem (CPPA-MF), the CPPA for the MCFC problem, and the CPPA for the link-capacitated traffic assignment problem (CPPA-CTAP). In the experiments, all the applications of the CPPA solve the problems successfully. Some of them demonstrate efficiency compared to the baseline algorithms. The experimental results prove the validation of using the CPPA framework to control link flow in the PPA is valid. The CPPA is also very robust and easy to implement since it could be successfully applied in three different scenarios. The proposed method shows that: having the ability to control the maximum among flow flowing through links in the PPA, the CPPA could tackle more complex real-world problems in the future.
Physarum Polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by biologists to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foragi ng two food sources s0 and s1. We prove that, under this model, the mass of the mold will eventually converge to the shortest s0 - s1 path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by the biologists and can be seen as an example of a natural algorithm, that is, an algorithm developed by evolution over millions of years.
In this paper, we study a probabilistic reinforcement-learning model for ants searching for the shortest path(s) between their nest and a source of food. In this model, the nest and the source of food are two distinguished nodes $N$ and $F$ in a fini te graph $mathcal G$. The ants perform a sequence of random walks on this graph, starting from the nest and stopped when first hitting the source of food. At each step of its random walk, the $n$-th ant chooses to cross a neighbouring edge with probability proportional to the number of preceding ants that crossed that edge at least once. We say that {it the ants find the shortest path} if, almost surely as the number of ants grow to infinity, almost all the ants go from the nest to the source of food through one of the shortest paths, without loosing time on other edges of the graph. Our contribution is three-fold: (1) We prove that, if $mathcal G$ is a tree rooted at $N$ whose leaves have been merged into node $F$, and with one edge between $N$ and $F$, then the ants indeed find the shortest path. (2) In contrast, we provide three examples of graphs on which the ants do not find the shortest path, suggesting that in this model and in most graphs, ants do not find the shortest path. (3) In all these cases, we show that the sequence of normalised edge-weights converge to a {it deterministic} limit, despite a linear-reinforcement mechanism, and we conjecture that this is a general fact which is valid on all finite graphs. To prove these results, we use stochastic approximation methods, and in particular the ODE method. One difficulty comes from the fact that this method relies on understanding the behaviour at large times of the solution of a non-linear, multi-dimensional ODE.
This paper reviews the overview of the dynamic shortest path routing problem and the various neural networks to solve it. Different shortest path optimization problems can be solved by using various neural networks algorithms. The routing in packet s witched multi-hop networks can be described as a classical combinatorial optimization problem i.e. a shortest path routing problem in graphs. The survey shows that the neural networks are the best candidates for the optimization of dynamic shortest path routing problems due to their fastness in computation comparing to other softcomputing and metaheuristics algorithms
We introduce FatPaths: a simple, generic, and robust routing architecture that enables state-of-the-art low-diameter topologies such as Slim Fly to achieve unprecedented performance. FatPaths targets Ethernet stacks in both HPC supercomputers as well as cloud data centers and clusters. FatPaths exposes and exploits the rich (fat) diversity of both minimal and non-minimal paths for high-performance multi-pathing. Moreover, FatPaths uses a redesigned purified transport layer that removes virtually all TCP performance issues (e.g., the slow start), and incorporates flowlet switching, a technique used to prevent packet reordering in TCP networks, to enable very simple and effective load balancing. Our design enables recent low-diameter topologies to outperform powerful Clos designs, achieving 15% higher net throughput at 2x lower latency for comparable cost. FatPaths will significantly accelerate Ethernet clusters that form more than 50% of the Top500 list and it may become a standard routing scheme for modern topologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا