ﻻ يوجد ملخص باللغة العربية
Total Generalized Variation (TGV) has recently been proven certainly successful in image processing for preserving sharp features as well as smooth transition variations. However, none of the existing works aims at numerically calculating TGV over triangular meshes. In this paper, we develop a novel numerical framework to discretize the second-order TGV over triangular meshes. Further, we propose a TGV-based variational model to restore the face normal field for mesh denoising. The TGV regularization in the proposed model is represented by a combination of a first- and second-order term, which can be automatically balanced. This TGV regularization is able to locate sharp features and preserve them via the first-order term, while recognize smoothly curved regions and recover them via the second-order term. To solve the optimization problem, we introduce an efficient iterative algorithm based on variable-splitting and augmented Lagrangian method. Extensive results and comparisons on synthetic and real scanning data validate that the proposed method outperforms the state-of-the-art methods visually and numerically.
We consider the total variation (TV) minimization problem used for compressive sensing and solve it using the generalized alternating projection (GAP) algorithm. Extensive results demonstrate the high performance of proposed algorithm on compressive
In this paper, we propose a regularization technique for noisy-image super-resolution and image denoising. Total variation (TV) regularization is adopted in many image processing applications to preserve the local smoothness. However, TV prior is pro
Feature-preserving mesh denoising has received noticeable attention recently. Many methods often design great weighting for anisotropic surfaces and small weighting for isotropic surfaces, to preserve sharp features. However, they often disregard the
Total generalization variation (TGV) is a very powerful and important regularization for various inverse problems and computer vision tasks. In this paper, we proposed a semismooth Newton based augmented Lagrangian method to solve this problem. The a
We consider variations of the Rudin-Osher-Fatemi functional which are particularly well-suited to denoising and deblurring of 2D bar codes. These functionals consist of an anisotropic total variation favoring rectangles and a fidelity term which meas