ترغب بنشر مسار تعليمي؟ اضغط هنا

Selective orbital imaging of excited states with x-ray spectroscopy: the example of $alpha$-MnS

89   0   0.0 ( 0 )
 نشر من قبل Andrea Amorese
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Amorese




اسأل ChatGPT حول البحث

Herein we show that non-resonant inelastic x-ray scattering involving an $s$ core level is a powerful spectroscopic method to characterize the excited states of transition metal compounds. The spherical charge distribution of the $s$ core hole allows the orientational dependence of the intensities of the various spectral features to produce a spatial charge image of the associated multiplet states in a straightforward manner, thereby facilitating the identification of their orbital character. In addition, the $s$ core hole does not add an extra orbital angular momentum component to the multiplet structure so that the well-established Sugano-Tanabe-Kamimura diagrams can be used for the analysis of the spectra. For $alpha$-MnS we observe the spherical charge density corresponding to its high spin $3d^5$ ($^6A_1$) ground state configuration and we were able to selectively image its excited states and identify them as $t_{2g}$ ($^5T_2$) and $e_g$ ($^5E$) with an energy splitting $10Dq$ of 0.78,eV.



قيم البحث

اقرأ أيضاً

We demonstrate that angle-resolved soft x-ray spectroscopy can resolve absorption by inequivalent oxygen sites and by different orbitals belonging to the same site in NaV2O5. By rotating the polarization direction, we see a dramatic change in the abs orption spectra at the oxygen K edge. Our theory identifies the detailed composition of the spectra and predicts a correct energy-ordering of the orbitals of three inequivalent oxygen atoms. Because different orbitals dominate absorption spectra at different energies and angles, one can excite at a specific site and ``orbital. In contrast, absorption at the vanadium L edge does not show large changes when varying the polarization direction. The reason for this is that different excitation channels (involving different initial states for the excited electron) overlap in energy and vary in compensating ways, obscuring each channels sensitive polarization dependence.
We extend our recently-developed heat-bath configuration interaction (HCI) algorithm, and our semistochastic algorithm for performing multireference perturbation theory, to the calculation of excited-state wavefunctions and energies. We employ time-r eversal symmetry, which reduces the memory requirements by more than a factor of two. An extrapolation technique is introduced to reliably extrapolate HCI energies to the Full CI limit. The resulting algorithm is used to compute the twelve lowest-lying potential energy surfaces of the carbon dimer using the cc-pV5Z basis set, with an estimated error in energy of 30-50 {mu}Ha compared to Full CI. The excitation energies obtained using our algorithm have a mean absolute deviation of 0.02 eV compared to experimental values. We also calculate the complete active-space (CAS) energies of the S0, S1, and T0 states of tetracene, which are of relevance to singlet fission, by fully correlating active spaces as large as 18 electrons in 36 orbitals.
Configuration-interaction-type calculations on electronic and vibrational structure are often the method of choice for the reliable approximation of many-particle wave functions and energies. The exponential scaling, however, limits their application range. An efficient approximation to the full configuration interaction solution can be obtained with the density matrix renormalization group (DMRG) algorithm without a restriction to a predefined excitation level. In a standard DMRG implementation, however, excited states are calculated with a ground-state optimization in the space orthogonal to all lower lying wave function solutions. A trivial parallelization is therefore not possible and the calculation of highly excited states becomes prohibitively expensive, especially in regions with a high density of states. Here, we introduce two variants of the density matrix renormalization group algorithm that allow us to target directly specific energy regions and therefore highly excited states. The first one, based on shift-and-invert techniques, is particularly efficient for low-lying states, but is not stable in regions with a high density of states. The second one, based on the folded auxiliary operator, is less efficient, but more accurate in targeting high-energy states. We apply the algorithm to the solution of the nuclear Schroedinger equation, but emphasize that it can be applied to the diagonalization of general Hamiltonians as well, such as the electronic Coulomb Hamiltonian to address X-ray spectra. In combination with several root-homing algorithms and a stochastic sampling of the determinant space, excited states of interest can be adequately tracked and analyzed during the optimization. We demonstrate that we can accurately calculate prominent spectral features of large molecules such as the sarcosyn-glycine dipeptide.
We report scanning transmission X-ray microscopy of mixed helical and skyrmion magnetic states in thin FeGe lamellae. This imaging of the out-of-plane magnetism allows clear identification of the different magnetic states, and reveals details about t he coexistence of helical and skyrmion states. In particular, our data show that finite length helices are continuously deformable down to the size of individual skyrmions and are hence topologically equivalent to skyrmions. Furthermore, we observe transition states between helical and skyrmion states across the thickness of the lamella that are evidence for frozen Bloch points in the sample after field cooling.
The relationship between charge and structure dictates the properties of electrochemical systems. For example, reversible Na-ion intercalation - a low-cost alternative to Li-ion technology - often induces detrimental structural phase transformations coupled with charge compensation reactions. However, little is known about the underpinning charge-structure mechanisms because the reduction-oxidation (redox) reactions within coexisting structural phases have so far eluded direct operando investigation. Here, we distinguish x-ray spectra of individual crystalline phases operando during a redox-induced phase transformation in P2-Na2/3Ni1/3Mn2/3O2 - an archetypal layered oxide for sodium-ion batteries. We measure the resonant elastic scattering on the Bragg reflection corresponding to the P2-phase lattice spacing. These resonant spectra become static midway through the sodium extraction in an operando coin cell, while the overall sodium extraction proceeds as evidenced by the X-ray absorption averaging over all electrochemically active Ni atoms. The stop of redox activity in the P2-structure signifies its inability to host Ni4+ ions. The coincident emergence of the O2- structure reveals the rigid link between the local redox and the long-range order during the phase transformation. The structure-selective x-ray spectroscopy thus opens a powerful avenue for resolving the dynamic chemistry of different structural phases in multi-phase electrochemical systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا