ﻻ يوجد ملخص باللغة العربية
SARS-CoV-2 is what has caused the COVID-19 pandemic. Early viral infection is mediated by the SARS-CoV-2 homo-trimeric Spike (S) protein with its receptor binding domains (RBDs) in the receptor-accessible state. We performed molecular dynamics simulation on the S protein with a focus on the function of its N-terminal domains (NTDs). Our study reveals that the NTD acts as a wedge and plays a crucial regulatory role in the conformational changes of the S protein. The complete RBD structural transition is allowed only when the neighboring NTD that typically prohibits the RBDs movements as a wedge detaches and swings away. Based on this NTD wedge model, we propose that the NTD-RBD interface should be a potential drug target.
The SARS-CoV-2 spike (S) protein facilitates viral infection, and has been the focus of many structure determination efforts. This paper studies the conformations of loops in the S protein based on the available Protein Data Bank (PDB) structures. Lo
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major worldwide public health emergency that has infected over $1.5$ million people. The partially open state of S1 subunit in spike glycoprotein is considered vital for its
Biomolecules binding is influenced by many factors and its assessment constitutes a very hard challenge in computational structural biology. In this respect, the evaluation of shape complementarity at molecular interfaces is one of the key factors to
Network theory-based approaches provide valuable insights into the variations in global structural connectivity between differing dynamical states of proteins. Our objective is to review network-based analyses to elucidate such variations, especially
The deadly coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has gone out of control globally. Despite much effort by scientists, medical experts, and society in general, the slow prog