ﻻ يوجد ملخص باللغة العربية
Network theory-based approaches provide valuable insights into the variations in global structural connectivity between differing dynamical states of proteins. Our objective is to review network-based analyses to elucidate such variations, especially in the context of subtle conformational changes. We present technical details of the construction and analyses of protein structure networks, encompassing both the non-covalent connectivity and dynamics. We examine the selection of optimal criteria for connectivity based on the physical concept of percolation. We highlight the advantages of using side-chain based network metrics in contrast to backbone measurements. As an illustrative example, we apply the described network approach to investigate the global conformational change between the closed and partially open states of the SARS-CoV-2 spike protein. This conformational change in the spike protein is crucial for coronavirus entry and fusion into human cells. Our analysis reveals global structural reorientations between the two states of the spike protein despite small changes between the two states at the backbone level. We also observe some differences at strategic locations in the structures, correlating with their functions, asserting the advantages of the side-chain network analysis. Finally we present a view of allostery as a subtle synergistic-global change between the ligand and the receptor, the incorporation of which would enhance the drug design strategies.
The SARS-CoV-2 spike (S) protein facilitates viral infection, and has been the focus of many structure determination efforts. This paper studies the conformations of loops in the S protein based on the available Protein Data Bank (PDB) structures. Lo
Biomolecules binding is influenced by many factors and its assessment constitutes a very hard challenge in computational structural biology. In this respect, the evaluation of shape complementarity at molecular interfaces is one of the key factors to
SARS-CoV-2 is what has caused the COVID-19 pandemic. Early viral infection is mediated by the SARS-CoV-2 homo-trimeric Spike (S) protein with its receptor binding domains (RBDs) in the receptor-accessible state. We performed molecular dynamics simula
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major worldwide public health emergency that has infected over $1.5$ million people. The partially open state of S1 subunit in spike glycoprotein is considered vital for its
We propose a benchmark to study surrogate model accuracy for protein-ligand docking. We share a dataset consisting of 200 million 3D complex structures and 2D structure scores across a consistent set of 13 million in-stock molecules over 15 receptors