ﻻ يوجد ملخص باللغة العربية
The time frame in which hydrogen reionization occurred is highly uncertain, but can be constrained by observations of Lyman-alpha (Ly$alpha$) emission from distant sources. Neutral hydrogen in the intergalactic medium (IGM) attenuates Ly$alpha$~photons emitted by galaxies. As reionization progressed the IGM opacity decreased, increasing Ly$alpha$~visibility. The galaxy Ly$alpha$~luminosity function (LF) is thus a useful tool to constrain the timeline of reionization. In this work, we model the Ly$alpha$~LF as a function of redshift, $z=5-10$, and average IGM neutral hydrogen fraction, $overline{x}_textsc{hi}$. We combine the Ly$alpha$~luminosity probability distribution obtained from inhomogeneous reionization simulations with a model for the UV LF to model the Ly$alpha$~LF. As the neutral fraction increases, the average number density of Ly$alpha$~emitting galaxies decreases, and are less luminous, though for $overline{x}_textsc{hi} lesssim 0.4$ there is only a small decrease of the Ly$alpha$~LF. We use our model to infer the IGM neutral fraction at $z=6.6, 7.0, 7.3$ from observed Ly$alpha$~LFs. We conclude that there is a significant increase in the neutral fraction with increasing redshift: $overline{x}_textsc{hi}(z=6.6)=0.08^{+ 0.08}_{- 0.05}, , overline{x}_textsc{hi}(z=7.0)=0.28 pm 0.05$ and $overline{x}_textsc{hi}(z=7.3)=0.83^{+ 0.06}_{- 0.07}$. We predict trends in the Ly$alpha$~luminosity density and Schechter parameters as a function of redshift and the neutral fraction. We find that the Ly$alpha$~luminosity density decreases as the universe becomes more neutral. Furthermore, as the neutral fraction increases, the faint-end slope of the Ly$alpha$~LF steepens, and the characteristic Ly$alpha$~luminosity shifts to lower values, concluding that the evolving shape of the Ly$alpha$~LF -- not just its integral -- is an important tool to study reionization.
At redshifts beyond z>6, as the mean fraction of neutral hydrogen x_HI in the intergalactic medium (IGM) increases, the line flux of Lyman alpha (Lya) emitters can be significantly suppressed, which can result in a decrease in the observed number of
We present a model for the evolution of the galaxy ultraviolet (UV) luminosity function (LF) across cosmic time where star formation is linked to the assembly of dark matter halos under the assumption of a mass dependent, but redshift independent, ef
(Abridged) We investigate the Lyman $alpha$ emitter luminosity function (LAE LF) within the redshift range $2.9 leq z leq 6$ from the first instalment of the blind integral field spectroscopic survey MUSE-Wide. This initial part of the survey probes
We present the luminosity function (LF) for ultraluminous Ly$alpha$ emitting galaxies (LAEs) at z = 6.6. We define ultraluminous LAEs (ULLAEs) as galaxies with logL(Ly$alpha$) > 43.5 erg s$^{-1}$. We select our main sample using the g, r, i, z, and N
The epoch of reionization (6 < z < 10) marks the period in our universe when the first large galaxies grew to fruition, and began to affect the universe around them. Massive stars, and potentially accreting supermassive black holes, filled the univer