ترغب بنشر مسار تعليمي؟ اضغط هنا

The Evolution of the Lyman-Alpha Luminosity Function During Reionization

76   0   0.0 ( 0 )
 نشر من قبل Alexa Morales
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The time frame in which hydrogen reionization occurred is highly uncertain, but can be constrained by observations of Lyman-alpha (Ly$alpha$) emission from distant sources. Neutral hydrogen in the intergalactic medium (IGM) attenuates Ly$alpha$~photons emitted by galaxies. As reionization progressed the IGM opacity decreased, increasing Ly$alpha$~visibility. The galaxy Ly$alpha$~luminosity function (LF) is thus a useful tool to constrain the timeline of reionization. In this work, we model the Ly$alpha$~LF as a function of redshift, $z=5-10$, and average IGM neutral hydrogen fraction, $overline{x}_textsc{hi}$. We combine the Ly$alpha$~luminosity probability distribution obtained from inhomogeneous reionization simulations with a model for the UV LF to model the Ly$alpha$~LF. As the neutral fraction increases, the average number density of Ly$alpha$~emitting galaxies decreases, and are less luminous, though for $overline{x}_textsc{hi} lesssim 0.4$ there is only a small decrease of the Ly$alpha$~LF. We use our model to infer the IGM neutral fraction at $z=6.6, 7.0, 7.3$ from observed Ly$alpha$~LFs. We conclude that there is a significant increase in the neutral fraction with increasing redshift: $overline{x}_textsc{hi}(z=6.6)=0.08^{+ 0.08}_{- 0.05}, , overline{x}_textsc{hi}(z=7.0)=0.28 pm 0.05$ and $overline{x}_textsc{hi}(z=7.3)=0.83^{+ 0.06}_{- 0.07}$. We predict trends in the Ly$alpha$~luminosity density and Schechter parameters as a function of redshift and the neutral fraction. We find that the Ly$alpha$~luminosity density decreases as the universe becomes more neutral. Furthermore, as the neutral fraction increases, the faint-end slope of the Ly$alpha$~LF steepens, and the characteristic Ly$alpha$~luminosity shifts to lower values, concluding that the evolving shape of the Ly$alpha$~LF -- not just its integral -- is an important tool to study reionization.



قيم البحث

اقرأ أيضاً

72 - Zoltan Haiman 2004
At redshifts beyond z>6, as the mean fraction of neutral hydrogen x_HI in the intergalactic medium (IGM) increases, the line flux of Lyman alpha (Lya) emitters can be significantly suppressed, which can result in a decrease in the observed number of emitters at a given Lya flux. However, cosmological HII regions surrounding the Lya emitting galaxies alleviate these effects. We use simple models of the Lya line suppression that incorporate the presence of HII regions to predict the overall effect of the Lya absorption on the Lya luminosity function. We find, in agreement with other recent studies, that unless ionizing sources are unusually strongly clustered, a fully neutral IGM may be inconsistent with the large abundance of confirmed z=6.5 Lya emitters. However, the presence of local HII regions prohibits placing a tight constraint on the mean neutral fraction. We find x_HI < 0.25; the presence of strong winds and/or the clustering of ionizing sources would further weaken this constraint. We conclude that the evolution of the Lya LF is consistent with reionization occurring near this redshift. Finally, we suggest that a measurement of observed Lya line width as a function of the Lya luminosity, in a future, larger sample of Lya emitters, may serve as a robust diagnostic of the neutral fraction in the IGM.
We present a model for the evolution of the galaxy ultraviolet (UV) luminosity function (LF) across cosmic time where star formation is linked to the assembly of dark matter halos under the assumption of a mass dependent, but redshift independent, ef ficiency. We introduce a new self-consistent treatment of the halo star formation history, which allows us to make predictions at $z>10$ (lookback time $lesssim500$ Myr), when growth is rapid. With a calibration at a single redshift to set the stellar-to-halo mass ratio, and no further degrees of freedom, our model captures the evolution of the UV LF over all available observations ($0lesssim zlesssim10$). The significant drop in luminosity density of currently detectable galaxies beyond $zsim8$ is explained by a shift of star formation toward less massive, fainter galaxies. Assuming that star formation proceeds down to atomic cooling halos, we derive a reionization optical depth $tau = 0.056^{+0.007}_{-0.010}$, fully consistent with the latest Planck measurement, implying that the universe is fully reionized at $z=7.84^{+0.65}_{-0.98}$. In addition, our model naturally produces smoothly rising star formation histories for galaxies with $Llesssim L_*$ in agreement with observations and hydrodynamical simulations. Before the epoch of reionization at $z>10$ we predict the LF to remain well-described by a Schechter function, but with an increasingly steep faint-end slope ($alphasim-3.5$ at $zsim16$). Finally, we construct forecasts for surveys with JWST~and WFIRST and predict that galaxies out to $zsim14$ will be observed. Galaxies at $z>15$ will likely be accessible to JWST and WFIRST only through the assistance of strong lensing magnification.
(Abridged) We investigate the Lyman $alpha$ emitter luminosity function (LAE LF) within the redshift range $2.9 leq z leq 6$ from the first instalment of the blind integral field spectroscopic survey MUSE-Wide. This initial part of the survey probes a region of 22.2 arcmin$^2$ in the CANDELS/GOODS-S field. The dataset provided us with 237 LAEs from which we construct the LAE LF in the luminosity range $42.2 leq log L_mathrm{Lyalpha} [mathrm{erg,s}^{-1}]leq 43.5$ within a volume of $2.3times10^5$ Mpc$^3$. For the LF construction we utilise three different non-parametric estimators: The classical $1/V_mathrm{max}$ method, the $C^{-}$ method, and an improved binned estimator for the differential LF. All three methods deliver consistent results, with the cumulative LAE LF being $Phi(log L_mathrm{Lyalpha} [mathrm{erg,s}^{-1}] = 43.5) simeq 3times 10^{-6}$ Mpc$^{-3}$ and $Phi(log L_mathrm{Lyalpha} [mathrm{erg,s}^{-1}] = 42.2) simeq 2 times 10^{-3}$ Mpc$^{-3}$ towards the bright- and faint-end of our survey, respectively. By employing a non-parametric statistical test, as well as by comparing the full sample to sub-samples in redshift bins, we find no supporting evidence for an evolving LAE LF over the probed redshift and luminosity range. We determine the best-fitting Schechter function parameters $alpha = -1.84^{+0.42}_{-0.41}$ and $log L^* [mathrm{erg,s}^{-1}] = 42.2^{+0.22}_{-0.16}$ with the corresponding normalisation $log phi^* [mathrm{Mpc}^{-3}] = -2.71$. When correcting for completeness in the LAE LF determinations, we take into account that LAEs exhibit diffuse extended low surface-brightness haloes. We compare the resulting LF to one obtained where we apply a correction assuming compact point-like emission. We find that the standard correction underestimates the LAE LF at the faint end of our survey by a factor of 2.5.
We present the luminosity function (LF) for ultraluminous Ly$alpha$ emitting galaxies (LAEs) at z = 6.6. We define ultraluminous LAEs (ULLAEs) as galaxies with logL(Ly$alpha$) > 43.5 erg s$^{-1}$. We select our main sample using the g, r, i, z, and N B921 observations of a wide-area (30 deg$^2$) Hyper Suprime-Cam survey of the North Ecliptic Pole (NEP) field. We select candidates with g, r, i > 26, NB921 $leq$ 23.5, and NB921 - z $leq$ 1.3. Using the DEIMOS spectrograph on Keck II, we confirm 9 of our 14 candidates as ULLAEs at z = 6.6 and the remaining 5 as an AGN at z = 6.6, two [OIII]$lambda$5007 emitting galaxies at z = 0.84 and z = 0.85, and two non-detections. This emphasizes the need for full spectroscopic follow-up to determine accurate LFs. In constructing the ULLAE LF at z = 6.6, we combine our 9 NEP ULLAEs with two previously discovered and confirmed ULLAEs in the COSMOS field: CR7 and COLA1. We apply rigorous corrections for incompleteness based on simulations. We compare our ULLAE LF at z = 6.6 with LFs at z = 5.7 and z = 6.6 from the literature. Our data reject some previous LF normalizations and power law indices, but they are broadly consistent with others. Indeed, a comparative analysis of the different literature LFs suggests that none is fully consistent with any of the others, making it critical to determine the evolution from z = 5.7 to z = 6.6 using LFs constructed in exactly the same way at both redshifts.
The epoch of reionization (6 < z < 10) marks the period in our universe when the first large galaxies grew to fruition, and began to affect the universe around them. Massive stars, and potentially accreting supermassive black holes, filled the univer se with ionizing radiation, burning off the haze of neutral gas that had filled the intergalactic medium (IGM) since recombination (z~1000). The evolution of this process constrains key properties of these earliest luminous sources, thus observationally constraining reionization is a key science goal for the next decade. The measurement of Lyman-alpha emission from photometrically-identified galaxies is a highly constraining probe of reionization, as a neutral IGM will resonantly scatter these photons, reducing detectability. While significant work has been done with 8-10m telescopes, these observations require extremely large telescopes (ELTs); the flux limits available from todays 10m class telescopes are sufficient for only the brightest known galaxies (m < 26). Ultra-deep surveys with the Giant Magellan Telescope (GMT) and Thirty Meter Telescope (TMT) will be capable of detecting Lyman-alpha emission from galaxies 2-3 magnitudes fainter than todays deepest surveys. Wide-field fiber spectroscopy on the GMT combined with narrow-field AO-assisted slit spectroscopy on the TMT will be able to probe the expected size of ionized bubbles throughout the epoch of reionization, following up degree scale deep imaging surveys with the Wide Field Infrared Space Telescope. These data will provide the first resolved Lyman-alpha-based maps of the ionized intergalactic medium throughout the epoch of reionization, constraining models of both the temporal and spatial evolution of this phase change.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا