ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating quantum vibronic dynamics at finite temperatures with many body wave functions at 0K

55   0   0.0 ( 0 )
 نشر من قبل Angus Dunnett
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For complex molecules, nuclear degrees of freedom can act as an environment for the electronic `system variables, allowing the theory and concepts of open quantum systems to be applied. However, when molecular system-environment interactions are non-perturbative and non-Markovian, numerical simulations of the complete system-environment wave function become necessary. These many body dynamics can be very expensive to simulate, and extracting finite-temperature results - which require running and averaging over many such simulations - becomes especially challenging. Here, we present numerical simulations that exploit a recent theoretical result that allows dissipative environmental effects at finite temperature to be extracted efficiently from a single, zero-temperature wave function simulation. Using numerically exact time-dependent variational matrix product states, we verify that this approach can be applied to vibronic tunneling systems and provide insight into the practical problems lurking behind the elegance of the theory, such as the rapidly growing numerical demands that can appear for high temperatures over the length of computations.



قيم البحث

اقرأ أيضاً

We study quantum many-body systems with a global U(1) conservation law, focusing on a theory of $N$ interacting fermions with charge conservation, or $N$ interacting spins with one conserved component of total spin. We define an effective operator si ze at finite chemical potential through suitably regularized out-of-time-ordered correlation functions. The growth rate of this density-dependent operator size vanishes algebraically with charge density; hence we obtain new bounds on Lyapunov exponents and butterfly velocities in charged systems at a given density, which are parametrically stronger than any Lieb-Robinson bound. We argue that the density dependence of our bound on the Lyapunov exponent is saturated in the charged Sachdev-Ye-Kitaev model. We also study random automaton quantum circuits and Brownian Sachdev-Ye-Kitaev models, each of which exhibit a different density dependence for the Lyapunov exponent, and explain the discrepancy. We propose that our results are a cartoon for understanding Planckian-limited energy-conserving dynamics at finite temperature.
80 - A. H. Skelt , I. DAmico 2020
The quantum adiabatic theorem is fundamental to time dependent quantum systems, but being able to characterize quantitatively an adiabatic evolution in many-body systems can be a challenge. This work demonstrates that the use of appropriate state and particle-density metrics is a viable method to quantitatively determine the degree of adiabaticity in the dynamic of a quantum many-body system. The method applies also to systems at finite temperature, which is important for quantum technologies and quantum thermodynamics related protocols. The importance of accounting for memory effects is discussed via comparison to results obtained by extending the quantum adiabatic criterion to finite temperatures: it is shown that this may produce false readings being quasi-Markovian by construction. As the proposed method makes it possible to characterize the degree of adiabatic evolution tracking only the system local particle densities, it is potentially applicable to both theoretical calculations of very large many-body systems and to experiments.
Finite-size error (FSE), the discrepancy between an observable in a finite system and in the thermodynamic limit, is ubiquitous in numerical simulations of quantum many body systems. Although a rough estimate of these errors can be obtained from a se quence of finite-size results, a strict, quantitative bound on the magnitude of FSE is still missing. Here we derive rigorous upper bounds on the FSE of local observables in real time quantum dynamics simulations initialized from a product state. In $d$-dimensional locally interacting systems with a finite local Hilbert space, our bound implies $ |langle hat{S}(t)rangle_L-langle hat{S}(t)rangle_infty|leq C(2v t/L)^{cL-mu}$, with $v$, $C$, $c$, $mu $ constants independent of $L$ and $t$, which we compute explicitly. For periodic boundary conditions (PBC), the constant $c$ is twice as large as that for open boundary conditions (OBC), suggesting that PBC have smaller FSE than OBC at early times. The bound can be generalized to a large class of correlated initial states as well. As a byproduct, we prove that the FSE of local observables in ground state simulations decays exponentially with $L$, under a suitable spectral gap condition. Our bounds are practically useful in determining the validity of finite-size results, as we demonstrate in simulations of the one-dimensional (1D) quantum Ising and Fermi-Hubbard models.
We analyse the properties of the synchronisation transition in a many-body system consisting of quantum van der Pol oscillators with all-to-all coupling using a self-consistent mean-field method. We find that the synchronised state, which the system can access for oscillator couplings above a critical value, is characterised not just by a lower phase uncertainty than the corresponding unsynchronised state, but also a higher number uncertainty. Just below the critical coupling the system can evolve to the unsynchronised steady state via a long-lived transient synchronised state. We investigate the way in which this transient state eventually decays and show that the critical scaling of its lifetime is consistent with a simple classical model.
431 - M.A. Novotny , F. Jin , S. Yuan 2015
We study measures of decoherence and thermalization of a quantum system $S$ in the presence of a quantum environment (bath) $E$. The whole system is prepared in a canonical thermal state at a finite temperature. Applying perturbation theory with resp ect to the system-environment coupling strength, we find that under common Hamiltonian symmetries, up to first order in the coupling strength it is sufficient to consider the uncoupled system to predict decoherence and thermalization measures of $S$. This decoupling allows closed form expressions for perturbative expansions for the measures of decoherence and thermalization in terms of the free energies of $S$ and of $E$. Numerical results for both coupled and decoupled systems with up to 40 quantum spins validate these findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا