ﻻ يوجد ملخص باللغة العربية
The quantum adiabatic theorem is fundamental to time dependent quantum systems, but being able to characterize quantitatively an adiabatic evolution in many-body systems can be a challenge. This work demonstrates that the use of appropriate state and particle-density metrics is a viable method to quantitatively determine the degree of adiabaticity in the dynamic of a quantum many-body system. The method applies also to systems at finite temperature, which is important for quantum technologies and quantum thermodynamics related protocols. The importance of accounting for memory effects is discussed via comparison to results obtained by extending the quantum adiabatic criterion to finite temperatures: it is shown that this may produce false readings being quasi-Markovian by construction. As the proposed method makes it possible to characterize the degree of adiabatic evolution tracking only the system local particle densities, it is potentially applicable to both theoretical calculations of very large many-body systems and to experiments.
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure
A hierarchy of equations for equilibrium reduced density matrices obtained earlier is used to consider systems of spinless bosons bound by forces of gravity alone. The systems are assumed to be at absolute zero of temperature under conditions of Bose
One of the key tasks in physics is to perform measurements in order to determine the state of a system. Often, measurements are aimed at determining the values of physical parameters, but one can also ask simpler questions, such as is the system in s
Quantum many-body systems exhibit a rich and diverse range of exotic behaviours, owing to their underlying non-classical structure. These systems present a deep structure beyond those that can be captured by measures of correlation and entanglement a
The resource theory of thermal operations, an established model for small-scale thermodynamics, provides an extension of equilibrium thermodynamics to nonequilibrium situations. On a lattice of any dimension with any translation-invariant local Hamil