ﻻ يوجد ملخص باللغة العربية
Nonlinear multi-scale problems are ubiquitous in materials science and biology. Complicated interactions between nonlinearities and (nonseparable) multiple scales pose a major challenge for analysis and simulation. In this paper, we study the numerical homogenization for multi-scale elliptic PDEs with monotone nonlinearity, in particular the Leray-Lions problem (a prototypical example is the p-Laplacian equation), where the nonlinearity cannot be parameterized with low dimensional parameters, and the linearization error is non-negligible. We develop the iterated numerical homogenization scheme by combining numerical homogenization methods for linear equations, and the so-called quasi-norm based iterative approach for monotone nonlinear equation. We propose a residual regularized nonlinear iterative method, and in addition, develop the sparse updating method for the efficient update of coarse spaces. A number of numerical results are presented to complement the analysis and valid the numerical method.
We propose a high order numerical homogenization method for dissipative ordinary differential equations (ODEs) containing two time scales. Essentially, only first order homogenized model globally in time can be derived. To achieve a high order method
We propose a new iterative scheme to compute the numerical solution to an over-determined boundary value problem for a general quasilinear elliptic PDE. The main idea is to repeatedly solve its linearization by using the quasi-reversibility method wi
We propose an efficient numerical strategy for simulating fluid flow through porous media with highly oscillatory characteristics. Specifically, we consider non-linear diffusion models. This scheme is based on the classical homogenization theory and
We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on $mathbb{R}^d$ with stationary law (i.e. spatially homogeneous
This paper provides an a~priori error analysis of a localized orthogonal decomposition method (LOD) for the numerical stochastic homogenization of a model random diffusion problem. If the uniformly elliptic and bounded random coefficient field of the