ﻻ يوجد ملخص باللغة العربية
This paper provides an a~priori error analysis of a localized orthogonal decomposition method (LOD) for the numerical stochastic homogenization of a model random diffusion problem. If the uniformly elliptic and bounded random coefficient field of the model problem is stationary and satisfies a quantitative decorrelation assumption in form of the spectral gap inequality, then the expected $L^2$ error of the method can be estimated, up to logarithmic factors, by $H+(varepsilon/H)^{d/2}$; $varepsilon$ being the small correlation length of the random coefficient and $H$ the width of the coarse finite element mesh that determines the spatial resolution. The proof bridges recent results of numerical homogenization and quantitative stochastic homogenization.
Methods for solving PDEs using neural networks have recently become a very important topic. We provide an a priori error analysis for such methods which is based on the $mathcal{K}_1(mathbb{D})$-norm of the solution. We show that the resulting constr
A number of non-standard finite element methods have been proposed in recent years, each of which derives from a specific class of PDE-constrained norm minimization problems. The most notable examples are $mathcal{L}mathcal{L}^*$ methods. In this wor
The analysis of the double-diffusion model and $mathbf{H}(mathrm{div})$-conforming method introduced in [Burger, Mendez, Ruiz-Baier, SINUM (2019), 57:1318--1343] is extended to the time-dependent case. In addition, the efficiency and reliability anal
We consider the numerical analysis of the inchworm Monte Carlo method, which is proposed recently to tackle the numerical sign problem for open quantum systems. We focus on the growth of the numerical error with respect to the simulation time, for wh
This paper analyzes the generalization error of two-layer neural networks for computing the ground state of the Schrodinger operator on a $d$-dimensional hypercube. We prove that the convergence rate of the generalization error is independent of the