ﻻ يوجد ملخص باللغة العربية
Gravitational lensing can happen not only for null signal but also timelike signals such as neutrinos and massive gravitational waves in some theories beyond GR. In this work we study the time delay between different relativistic images formed by signals with arbitrary asymptotic velocity $v$ in general static and spherically symmetric spacetimes. A perturbative method is used to calculate the total travel time in the strong field limit, which is found to be in quasi-series of the small parameter $a=1-b_c/b$ where $b$ is the impact parameter and $b_c$ is its critical value. The coefficients of the series are completely fixed by the behaviour of the metric functions near the particle sphere $r_c$ and only the first term of the series contains a weak logarithmic divergence. The time delay $Delta t_{n,m}$ to the leading non-trivial order was shown to equal the particle sphere circumference divided by the local signal velocity and multiplied by the winding number and the redshift factor. By assuming the Sgr A* supermassive black hole is a Hayward one, we were able to validate the quasi-series form of the total time, and reveal the effects of the spacetime parameter $l$, the signal velocity $v$ and the source/detector coordinate difference $Deltaphi_{sd}$ on the time delay. It is found that as $l$ increase from 0 to its critical value $l_c$, both $r_c$ and $Delta t_{n,m}$ decrease. The variation of $Delta t_{n+1,n}$ for $l$ from 0 to $l_c$ can be as large as $7.2times 10^1$ [s], whose measurement then can be used to constrain the value of $l$. While for ultra-relativistic neutrino or gravitational wave, the variation of $Delta t_{n,m}$ is too small to be resolved. The dependence of $Delta t_{n,-n}$ on $Delta phi_{sd}$ shows that to temporally resolve the two sequences of images from opposite sides of the lens, $|Delta phi_{sd}-pi|$ has to be larger than certain value.
A perturbative method to compute the total travel time of both null and lightlike rays in arbitrary static spherically symmetric spacetimes in the weak field limit is proposed. The resultant total time takes a quasi-series form of the impact paramete
The deflection and gravitational lensing of light and massive particles in arbitrary static, spherically symmetric and asymptotically (anti-)de Sitter spacetimes are considered in this work. We first proved that for spacetimes whose metric satisfying
We study the time delay between two relativistic images due to strong gravitational lensing of the light rays caused by the Kerr and Kerr-Newman black holes. Using the known form of the deflection angle in the strong deflection limit (SDL) allows us
We present an idealised model of gravitational collapse, describing a collapsing rotating cylindrical shell of null dust in flat space, with the metric of a spinning cosmic string as the exterior. We find that the shell bounces before closed timelike
A perturbative method to compute the deflection angle of both timelike and null rays in arbitrary static and spherically symmetric spacetimes in the strong field limit is proposed. The result takes a quasi-series form of $(1-b_c/b)$ where $b$ is the