ﻻ يوجد ملخص باللغة العربية
A perturbative method to compute the total travel time of both null and lightlike rays in arbitrary static spherically symmetric spacetimes in the weak field limit is proposed. The resultant total time takes a quasi-series form of the impact parameter. The coefficient of this series at a certain order $n$ is shown to be determined by the asymptotic expansion of the metric functions to the order $n+1$. To the leading order(s), the time delay, as well as the difference between the time delays of two kinds of relativistic signals, is then shown to take a universal form for all SSS spacetimes. This universal form depends on the mass $M$ and a post-Newtonian parameter $gamma$ of the spacetime. The analytical result is numerically verified using the central black hole of M87 as the gravitational lensing center.
Gravitational lensing can happen not only for null signal but also timelike signals such as neutrinos and massive gravitational waves in some theories beyond GR. In this work we study the time delay between different relativistic images formed by sig
We examine potential deformations of inner black hole and cosmological horizons in Reissner-Nordstrom de-Sitter spacetimes. While the rigidity of the outer black hole horizon is guaranteed by theorem, that theorem applies to neither the inner black h
The existence and stability of circular orbits (CO) in static and spherically symmetric (SSS) spacetime are important because of their practical and potential usefulness. In this paper, using the fixed point method, we first prove a necessary and suf
The deflection and gravitational lensing of light and massive particles in arbitrary static, spherically symmetric and asymptotically (anti-)de Sitter spacetimes are considered in this work. We first proved that for spacetimes whose metric satisfying
It is shown that the free motion of massive particles moving in static spacetimes are given by the geodesics of an energy-dependent Riemannian metric on the spatial sections analogous to Jacobis metric in classical dynamics. In the massless limit Jac