ﻻ يوجد ملخص باللغة العربية
In recent years, the existence of a hadronically stable $bar{b} bar{b} u d$ tetraquark with quantum numbers $I(J^P) = 0(1^+)$ was confirmed by first principles lattice QCD computations. In this work we use lattice QCD to compare two frequently discussed competing structures for this tetraquark by considering meson-meson as well as diquark-antidiquark creation operators. We use the static-light approximation, where the two $bar{b}$ quarks are assumed to be infinitely heavy with frozen positions, while the light $u$ and $d$ quarks are fully relativistic. By minimizing effective energies and by solving generalized eigenvalue problems we determine the importance of the meson-meson and the diquark-antidiquark creation operators with respect to the ground state. It turns out, that the diquark-antidiquark structure dominates for $bar{b} bar{b}$ separations $r < 0.25 , text{fm}$, whereas it becomes increasingly more irrelevant for larger separations, where the $I(J^P) = 0(1^+)$ tetraquark is mostly a meson-meson state. We also estimate the meson-meson to diquark-antidiquark ratio of this tetraquark and find around $60% / 40%$.
We compare two frequently discussed competing structures for a stable $bar b bar b u d$ tetraquark with quantum numbers $I(J^P) = 0(1^+)$ by considering a meson-meson as well as a diquark-antidiquark creation operator. We treat the heavy antiquarks a
We study tetraquark resonances with lattice QCD potentials computed for a static bbar bbar pair in the presence of two lighter quarks u d, the Born-Oppenheimer approximation and the emergent wave method. As a proof of concept we focus on the system w
We use lattice QCD to investigate the spectrum of the $bar{b} bar{b} u d$ four-quark system with quantum numbers $I(J^P) = 0(1^+)$. We use five different gauge-link ensembles with $2+1$ flavors of domain-wall fermions, including one at the physical p
We evaluate the s-wave interaction of pseudoscalar and vector mesons with both charm and beauty to investigate the possible existence of molecular $BD$, $B^*D$, $BD^*$, $B^*D^*$, $Bbar D$, $B^*bar D$, $Bbar D^*$ or $B^* bar D^*$ meson states. The sca
We present an update of our calculations of the decay constants of the D, D_s, B, and B_s mesons in unquenched 2+1 flavor QCD. We use the MILC library of improved staggered gauge ensembles at lattice spacings 0.09, 0.12, and 0.15 fm, clover heavy qua