ﻻ يوجد ملخص باللغة العربية
We study tetraquark resonances with lattice QCD potentials computed for a static bbar bbar pair in the presence of two lighter quarks u d, the Born-Oppenheimer approximation and the emergent wave method. As a proof of concept we focus on the system with isospin I = 0, but consider different relative angular momenta l of the heavy quarks bbar bbar. For l=0 a bound state has already been predicted with quantum numbers I(JP) = 0(1+). Exploring various angular momenta we now compute the phase shifts and search for S and T matrix poles in the second Riemann sheet. We predict a tetraquark resonance for l =1, decaying into two B mesons, with quantum numbers I(JP) = 0(1-), mass m = 10 , 576^{+4}_{-4} MeV} and decay width Gamma = 112^{+90}_{-103} MeV.
We study tetraquark resonances using lattice QCD potentials for a pair of static antiquarks $bar{b}bar{b}$ in the presence of two light quarks $ud$. The system is treated in the Born-Oppenheimer approximation and we use the emergent wave method. We f
We use lattice QCD to investigate the spectrum of the $bar{b} bar{b} u d$ four-quark system with quantum numbers $I(J^P) = 0(1^+)$. We use five different gauge-link ensembles with $2+1$ flavors of domain-wall fermions, including one at the physical p
We compare two frequently discussed competing structures for a stable $bar b bar b u d$ tetraquark with quantum numbers $I(J^P) = 0(1^+)$ by considering a meson-meson as well as a diquark-antidiquark creation operator. We treat the heavy antiquarks a
In recent years, the existence of a hadronically stable $bar{b} bar{b} u d$ tetraquark with quantum numbers $I(J^P) = 0(1^+)$ was confirmed by first principles lattice QCD computations. In this work we use lattice QCD to compare two frequently discus
We determine hadronic matrix elements relevant for the mass and width differences, $Delta M_s$ & $Delta Gamma_s$ in the $B^0_s - bar{B^0_s}$ meson system using fully unquenched lattice QCD. We employ the MILC collaboration gauge configurations that i