ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional superconducting fluctuations associated with charge density wave stripes in La$_{1.87}$Sr$_{0.13}$Cu$_{0.99}$Fe$_{0.01}$O$_4$

90   0   0.0 ( 0 )
 نشر من قبل Jun-Sik Lee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The presence of a small concentration of in-plane Fe dopants in La$_{1.87}$Sr$_{0.13}$Cu$_{0.99}$Fe$_{0.01}$O$_4$ is known to enhance stripe-like spin and charge density wave (SDW and CDW) order, and suppress the superconducting $T_c$. Here, we show that it also induces highly two-dimensional (2D) superconducting correlations that have been argued to be signatures of a new form of superconducting order, so-called pair-density-wave (PDW) order. In addition, using the resonant soft x-ray scattering, we find that the 2D superconducting fluctuation is strongly associated with the CDW stripe. In particular, the PDW signature first appears when the correlation length of the CDW stripe grows over eight times the lattice unit ($sim$ 8$a$). These results provide critical conditions for the formation of PDW order.



قيم البحث

اقرأ أيضاً

462 - K. Iida , J. Lee , M. B. Stone 2012
We investigate the imaginary part of the wave vector dependent dynamic spin susceptibility in Sr$_2$(Ru$_{0.99}$Ti$_{0.01}$)O$_4$ as a function of temperature using neutron scattering. At T=5 K, two-dimensional incommensurate (IC) magnetic fluctuatio ns are clearly observed around $mathbf{Q}_text{c}=(0.3,0.3,L)$ up to approximately 60 meV energy transfer. We find that the IC excitations disperse to ridges around the $(pi,pi)$ point. Below 50 K, the energy and temperature dependent excitations are well described by the phenomenological response function for a Fermi liquid system with a characteristic energy of 4.0(1) meV. Although the wave vector dependence of the IC magnetic fluctuations in Sr$_2$(Ru$_{0.99}$Ti$_{0.01}$)O$_4$ is similar to that in the Fermi liquid state of the parent compound, Sr$_2$RuO$_4$, the magnetic fluctuations are clearly suppressed by the Ti-doping.
96 - J.-J. Wen , H. Huang , S.-J. Lee 2018
The discovery of charge- and spin-density-wave (CDW/SDW) orders in superconducting cuprates has altered our perspective on the nature of high-temperature superconductivity (SC). However, it has proven difficult to fully elucidate the relationship bet ween the density wave orders and SC. Here using resonant soft X-ray scattering we study the archetypal cuprate, La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) over a broad doping range. We reveal the existence of two types of CDW orders in LSCO, namely CDW stripe order and CDW short-range order (SRO). While the CDW-SRO is suppressed by SC, it is partially transformed into the CDW stripe order with developing SDW stripe order near the superconducting $T_{rm c}$. These findings indicate that the stripe orders and SC are inhomogeneously distributed in the superconducting CuO$_2$ planes of LSCO. This further suggests a new perspective on the putative pair-density-wave order that coexists with SC, SDW, and CDW orders.
The presence of charge and spin stripe order in the La2CuO4-based family of superconductors continues to lead to new insight on the unusual ground state properties of high Tc cuprates. Soon after the discovery of charge stripe order at T(charge)=65K in Nd3+ co-doped LSCO ($T_{c}simeq6$~K) [Tranquada et al., Nature {bf 375} (1995) 561], Hunt et al. demonstrated that La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$ and superconducting LSCO with x~1/8 (Tc ~ 30K) share nearly identical NMR anomalies near $T_{charge}$ of the former [Phys. Rev. Lett. {bf 82} (1999) 4300]. Their inevitable conclusion that LSCO also undergoes charge order at a comparable temperature became controversial, because diffraction measurements at the time were unable to detect Bragg peaks associated with charge order. Recent advances in x-ray diffraction techniques finally led to definitive confirmations of the charge order Bragg peaks in LSCO with an onset at as high as T(charge)=80K. Meanwhile, improved instrumental technology has enabled routine NMR measurements that were not feasible two decades ago. Motivated by these new developments, we revisit the charge order transition of a LSCO single crystal based on 63Cu NMR techniques. We demonstrate that 63Cu NMR properties of the nuclear spin $I_{z}$ = -1/2 to +1/2 central transition below T(charge) exhibit unprecedentedly strong dependence on the measurement time scale set by the NMR pulse separation time $tau$; a new kind of anomalous, very broad wing-like 63Cu NMR signals gradually emerge below T(charge) only for extremely short $tau lesssim 4~mu$s, while the spectral weight of the normal NMR signals is progressively wiped out. The NMR linewidth and relaxation rates depend strongly on $tau$ below T(charge), and their enhancement in the charge ordered state indicates that charge order turns on strong but inhomogeneous growth of Cu spin-spin correlations.
107 - K. Jin , B. X. Wu , B. Y. Zhu 2011
The transport properties of La$_{1.89}$Ce$_{0.11}$CuO$_{4}$(LCCO) and La$_{1.89}$Ce$_{0.11}$(Cu$_{0.99}$Co$_{0.01}$)O$_{4}$ (LCCO:Co) superconducting thin films are investigated. When the external field $bf H$ is applied along the crystallographic c- axis, a double sign reversal of the Hall voltage in the mixed state of LCCO:Co thin films is observed whereas a single sign reversal is detected in LCCO. A double sign reversal of the Hall signal in LCCO can be recovered if the magnetic field is tilted away from the plane of the film. We find that the transition from one to two of the Hall sign reversal coincides with the change in the pinning from strong to weak. This temperature/field induced transition is caused either by the magnetic impurities in LCCO:Co or by the coupling between the pancake vortices and the in-plane Josephson vortices in LCCO. These results are in agreement with early theoretical and numerical predictions.
126 - Qisi Wang , M. Horio , K. von Arx 2019
We use resonant inelastic x-ray scattering to investigate charge-stripe correlations in La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_4$. By differentiating elastic from inelastic scattering, it is demonstrated that charge-stripe correlations precede both t he structural low-temperature tetragonal phase and the transport-defined pseudogap onset. The scattering peak amplitude from charge stripes decays approximately as $T^{-2}$ towards our detection limit. The in-plane integrated intensity, however, remains roughly temperature independent. Therefore, although the incommensurability shows a remarkably large increase at high temperature, our results are interpreted via a single scattering constituent. In fact, direct comparison to other stripe-ordered compounds (La$_{1.875}$Ba$_{0.125}$CuO$_4$, La$_{1.475}$Nd$_{0.4}$Sr$_{0.125}$CuO$_4$ and La$_{1.875}$Sr$_{0.125}$CuO$_4$) suggests a roughly constant integrated scattering intensity across all these compounds. Our results therefore provide a unifying picture for the charge-stripe ordering in La-based cuprates. As charge correlations in La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_4$ extend beyond the low-temperature tetragonal and pseudogap phase, their emergence heralds a spontaneous symmetry breaking in this compound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا