ﻻ يوجد ملخص باللغة العربية
We use resonant inelastic x-ray scattering to investigate charge-stripe correlations in La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_4$. By differentiating elastic from inelastic scattering, it is demonstrated that charge-stripe correlations precede both the structural low-temperature tetragonal phase and the transport-defined pseudogap onset. The scattering peak amplitude from charge stripes decays approximately as $T^{-2}$ towards our detection limit. The in-plane integrated intensity, however, remains roughly temperature independent. Therefore, although the incommensurability shows a remarkably large increase at high temperature, our results are interpreted via a single scattering constituent. In fact, direct comparison to other stripe-ordered compounds (La$_{1.875}$Ba$_{0.125}$CuO$_4$, La$_{1.475}$Nd$_{0.4}$Sr$_{0.125}$CuO$_4$ and La$_{1.875}$Sr$_{0.125}$CuO$_4$) suggests a roughly constant integrated scattering intensity across all these compounds. Our results therefore provide a unifying picture for the charge-stripe ordering in La-based cuprates. As charge correlations in La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_4$ extend beyond the low-temperature tetragonal and pseudogap phase, their emergence heralds a spontaneous symmetry breaking in this compound.
We report an ultrahigh resolution resonant inelastic x-ray scattering (RIXS) study of the in-plane bond-stretching phonon mode in stripe-ordered cuprate La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_4$. Phonon softening and lifetime shortening are found aro
We address the kinetic competition between charge striped order and superconductivity in La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_{4}$. Ultrafast optical excitation is tuned to a mid-infrared vibrational resonance that destroys charge order and promptl
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge a
We performed Cu {it K}-edge X-ray absorption fine structure measurements on T-type La$_{1.8}$Eu$_{0.2}$CuO$_4$ (LECO) and Nd$_2$CuO$_4$ (NCO) to investigate the variation in the electronic state associated with the emergence of superconductivity due
We present new x-ray and neutron scattering measurements of stripe order in La(1.875)Ba(0.125)CuO(4), along with low-field susceptibility, thermal conductivity, and specific heat data. We compare these with previously reported results for resistivity