ﻻ يوجد ملخص باللغة العربية
We construct a semi-holographic effective theory in which the electron of a two-dimensional band hybridizes with a fermionic operator of a critical holographic sector, while also interacting with other bands that preserve quasiparticle characteristics. Besides the scaling dimension $ u$ of the fermionic operator in the holographic sector, the effective theory has two {dimensionless} couplings $alpha$ and $gamma$ determining the holographic and Fermi-liquid-type contributions to the self-energy respectively. We find that irrespective of the choice of the holographic critical sector, there exists a ratio of the effective couplings for which we obtain linear-in-T resistivity for a wide range of temperatures. This scaling persists to arbitrarily low temperatures when $ u$ approaches unity in which limit we obtain a marginal Fermi liquid with a specific temperature dependence of the self-energy.
The linear-$T$ resistivity is one of the characteristic and universal properties of strange metals. There have been many progress in understanding it from holographic perspective (gauge/gravity duality). In most holographic models, the linear-$T$ res
Semi-holographic models of non-Fermi liquids have been shown to have generically stable generalised quasi-particles on the Fermi surface. Although these excitations are broad and exhibit particle-hole asymmetry, they were argued to be stable from int
We present an infinite class of 2+1 dimensional field theories which, after coupling to semi-holographic fermions, exhibit strange metallic behavior in a suitable large $N$ limit. These theories describe lattices of hypermultiplet defects interacting
We study the fermionic spectral density in a strongly correlated quantum system described by a gravity dual. In the presence of periodically modulated chemical potential, which models the effect of the ionic lattice, we explore the shapes of the corr
We use holography to study the ground state of a system with interacting bosonic and fermionic degrees of freedom at finite density. The gravitational model consists of Einstein-Maxwell gravity coupled to a perfect fluid of charged fermions and to a