ﻻ يوجد ملخص باللغة العربية
We study the fermionic spectral density in a strongly correlated quantum system described by a gravity dual. In the presence of periodically modulated chemical potential, which models the effect of the ionic lattice, we explore the shapes of the corresponding Fermi surfaces, defined by the location of peaks in the spectral density at the Fermi level. We find that at strong lattice potentials sectors of the Fermi surface are unexpectedly destroyed and the Fermi surface becomes an arc-like disconnected manifold. We explain this phenomenon in terms of a collision of the Fermi surface pole with zeros of the fermionic Greens function, which are explicitly computable in the holographic dual.
We construct a semi-holographic effective theory in which the electron of a two-dimensional band hybridizes with a fermionic operator of a critical holographic sector, while also interacting with other bands that preserve quasiparticle characteristic
We present an infinite class of 2+1 dimensional field theories which, after coupling to semi-holographic fermions, exhibit strange metallic behavior in a suitable large $N$ limit. These theories describe lattices of hypermultiplet defects interacting
We use holography to study the ground state of a system with interacting bosonic and fermionic degrees of freedom at finite density. The gravitational model consists of Einstein-Maxwell gravity coupled to a perfect fluid of charged fermions and to a
We use holography to compute the conductivity in an inhomogeneous charged scalar background. We work in the probe limit of the four-dimensional Einstein-Maxwell theory coupled to a charged scalar. The background has zero charge density and is constru
In this paper, we study a holographic dual of a confined fermi liquid state by putting a charged fluid of fermions in the AdS soliton geometry. This can be regarded as a confined analogue of electron stars. Depending on the parameters such as the mas