ﻻ يوجد ملخص باللغة العربية
Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain the predictions, giving rise to the area of explainability. Recently, explainability of deep models on images and texts has achieved significant progress. In the area of graph data, graph neural networks (GNNs) and their explainability are experiencing rapid developments. However, there is neither a unified treatment of GNN explainability methods, nor a standard benchmark and testbed for evaluations. In this survey, we provide a unified and taxonomic view of current GNN explainability methods. Our unified and taxonomic treatments of this subject shed lights on the commonalities and differences of existing methods and set the stage for further methodological developments. To facilitate evaluations, we generate a set of benchmark graph datasets specifically for GNN explainability. We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.
Backdoor attacks represent a serious threat to neural network models. A backdoored model will misclassify the trigger-embedded inputs into an attacker-chosen target label while performing normally on other benign inputs. There are already numerous wo
Achieving transparency in black-box deep learning algorithms is still an open challenge. High dimensional features and decisions given by deep neural networks (NN) require new algorithms and methods to expose its mechanisms. Current state-of-the-art
While many existing graph neural networks (GNNs) have been proven to perform $ell_2$-based graph smoothing that enforces smoothness globally, in this work we aim to further enhance the local smoothness adaptivity of GNNs via $ell_1$-based graph smoot
Deep learnings success has been widely recognized in a variety of machine learning tasks, including image classification, audio recognition, and natural language processing. As an extension of deep learning beyond these domains, graph neural networks
As large-scale graphs become increasingly more prevalent, it poses significant computational challenges to process, extract and analyze large graph data. Graph coarsening is one popular technique to reduce the size of a graph while maintaining essent