ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable Partial Explainability in Neural Networks via Flexible Activation Functions

93   0   0.0 ( 0 )
 نشر من قبل Schyler Chengyao Sun
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Achieving transparency in black-box deep learning algorithms is still an open challenge. High dimensional features and decisions given by deep neural networks (NN) require new algorithms and methods to expose its mechanisms. Current state-of-the-art NN interpretation methods (e.g. Saliency maps, DeepLIFT, LIME, etc.) focus more on the direct relationship between NN outputs and inputs rather than the NN structure and operations itself. In current deep NN operations, there is uncertainty over the exact role played by neurons with fixed activation functions. In this paper, we achieve partially explainable learning model by symbolically explaining the role of activation functions (AF) under a scalable topology. This is carried out by modeling the AFs as adaptive Gaussian Processes (GP), which sit within a novel scalable NN topology, based on the Kolmogorov-Arnold Superposition Theorem (KST). In this scalable NN architecture, the AFs are generated by GP interpolation between control points and can thus be tuned during the back-propagation procedure via gradient descent. The control points act as the core enabler to both local and global adjustability of AF, where the GP interpolation constrains the intrinsic autocorrelation to avoid over-fitting. We show that there exists a trade-off between the NNs expressive power and interpretation complexity, under linear KST topology scaling. To demonstrate this, we perform a case study on a binary classification dataset of banknote authentication. By quantitatively and qualitatively investigating the mapping relationship between inputs and output, our explainable model can provide interpretation over each of the one-dimensional attributes. These early results suggest that our model has the potential to act as the final interpretation layer for deep neural networks.



قيم البحث

اقرأ أيضاً

The scope of research in the domain of activation functions remains limited and centered around improving the ease of optimization or generalization quality of neural networks (NNs). However, to develop a deeper understanding of deep learning, it bec omes important to look at the non linear component of NNs more carefully. In this paper, we aim to provide a generic form of activation function along with appropriate mathematical grounding so as to allow for insights into the working of NNs in future. We propose Self-Learnable Activation Functions (SLAF), which are learned during training and are capable of approximating most of the existing activation functions. SLAF is given as a weighted sum of pre-defined basis elements which can serve for a good approximation of the optimal activation function. The coefficients for these basis elements allow a search in the entire space of continuous functions (consisting of all the conventional activations). We propose various training routines which can be used to achieve performance with SLAF equipped neural networks (SLNNs). We prove that SLNNs can approximate any neural network with lipschitz continuous activations, to any arbitrary error highlighting their capacity and possible equivalence with standard NNs. Also, SLNNs can be completely represented as a collections of finite degree polynomial upto the very last layer obviating several hyper parameters like width and depth. Since the optimization of SLNNs is still a challenge, we show that using SLAF along with standard activations (like ReLU) can provide performance improvements with only a small increase in number of parameters.
114 - Hao Yuan , Haiyang Yu , Shurui Gui 2020
Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc tec hniques to explain the predictions, giving rise to the area of explainability. Recently, explainability of deep models on images and texts has achieved significant progress. In the area of graph data, graph neural networks (GNNs) and their explainability are experiencing rapid developments. However, there is neither a unified treatment of GNN explainability methods, nor a standard benchmark and testbed for evaluations. In this survey, we provide a unified and taxonomic view of current GNN explainability methods. Our unified and taxonomic treatments of this subject shed lights on the commonalities and differences of existing methods and set the stage for further methodological developments. To facilitate evaluations, we generate a set of benchmark graph datasets specifically for GNN explainability. We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.
The machine learning community has become increasingly interested in the energy efficiency of neural networks. The Spiking Neural Network (SNN) is a promising approach to energy-efficient computing, since its activation levels are quantized into temp orally sparse, one-bit values (i.e., spike events), which additionally converts the sum over weight-activity products into a simple addition of weights (one weight for each spike). However, the goal of maintaining state-of-the-art (SotA) accuracy when converting a non-spiking network into an SNN has remained an elusive challenge, primarily due to spikes having only a single bit of precision. Adopting tools from signal processing, we cast neural activation functions as quantizers with temporally-diffused error, and then train networks while smoothly interpolating between the non-spiking and spiking regimes. We apply this technique to the Legendre Memory Unit (LMU) to obtain the first known example of a hybrid SNN outperforming SotA recurrent architectures -- including the LSTM, GRU, and NRU -- in accuracy, while reducing activities to at most 3.74 bits on average with 1.26 significant bits multiplying each weight. We discuss how these methods can significantly improve the energy efficiency of neural networks.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use graph sampling or layer-wise sampling techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine. The codes of GBP can be found at https://github.com/chennnM/GBP .
Effective regularization techniques are highly desired in deep learning for alleviating overfitting and improving generalization. This work proposes a new regularization scheme, based on the understanding that the flat local minima of the empirical r isk cause the model to generalize better. This scheme is referred to as adversarial model perturbation (AMP), where instead of directly minimizing the empirical risk, an alternative AMP loss is minimized via SGD. Specifically, the AMP loss is obtained from the empirical risk by applying the worst norm-bounded perturbation on each point in the parameter space. Comparing with most existing regularization schemes, AMP has strong theoretical justifications, in that minimizing the AMP loss can be shown theoretically to favour flat local minima of the empirical risk. Extensive experiments on various modern deep architectures establish AMP as a new state of the art among regularization schemes. Our code is available at https://github.com/hiyouga/AMP-Regularizer.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا