ﻻ يوجد ملخص باللغة العربية
The Earth is bombarded by ultra-relativistic particles, known as cosmic rays (CRs). CRs with energies up to a few PeV (=10$^{15}$ eV), the knee in the particle spectrum, are believed to have a Galactic origin. One or more factories of PeV CRs, or PeVatrons, must thus be active within our Galaxy. The direct detection of PeV protons from their sources is not possible since they are deflected in the Galactic magnetic fields. Hundred TeV $gamma$-rays from decaying $pi^0$, produced when PeV CRs collide with the ambient gas, can provide the decisive evidence of proton acceleration up to the knee. Here we report the discovery by the High Altitude Water Cherenkov (HAWC) observatory of the $gamma$-ray source, HAWC~J1825-134, whose energy spectrum extends well beyond 200 TeV without a break or cutoff. The source is found to be coincident with a giant molecular cloud. The ambient gas density is as high as 700 protons/cm$^3$. While the nature of this extreme accelerator remains unclear, CRs accelerated to energies of several PeV colliding with the ambient gas likely produce the observed radiation.
The eHWC J1825-134 source is located in the southern sky and has been recently detected by the HAWC observatory. It presents an hard spectral index and its gamma-ray flux extends up to energies close to 100 TeV without significant suppression. Amongs
The dynamics of dwarf irregular (dIrr) galaxies are observed to be dominated by dark matter (DM). Recently, the DM density distribution has been studied for 31 dIrrs. Their extended DM halo (Burket type profile) makes these objects good candidates fo
The recently completed High Altitude Water Cherenkov (HAWC) gamma-ray observatory has been taking data with a partial array for more than one year and is now operating with >95% duty cycle in its full configuration. With an instantaneous field of vie
Supernova remnants (SNRs) have long been hypothesized as the main source of Galactic Cosmic Rays up to PeV energies. Some of them have indeed been shown to accelerate protons to TeV energies and above. But which of them are indeed efficient accelerat
The Milky Way contains hundreds of binary systems which are known to emit in radio and X-rays, but only a handful of binaries have been observed to produce very high-energy gamma rays. In addition, the emission mechanisms which produce the gamma rays